Supporting Document Mandatory Technical Document Collaborative Protection Profile for QQQQ Version: 1.0 2015-08-14 **National Information Assurance Partnership** ## **Foreword** This is a Supporting Document (SD), intended to complement the Common Criteria version 3 and the associated Common Evaluation Methodology for Information Technology Security Evaluation. SDs may be "Guidance Documents", that highlight specific approaches and application of the standard to areas where no mutual recognition of its application is required, and as such, are not of normative nature, or "Mandatory Technical Documents", whose application is mandatory for evaluations whose scope is covered by that of the SD. The usage of the latter class is not only mandatory, but certificates issued as a result of their application are recognized under the CCRA. ### **Technical Editor:** National Information Assurance Partnership (NIAP) ## **Document history:** | Version | Date | Comment | |---------|------------|--| | Round 1 | 2015-04-23 | First draft of version 1.0 for comment | | 1.0 | 2015-08-14 | Release - first version released | #### **General Purpose:** The purpose of this SD is to define evaluation methods for the functional behavior of products. ## **Acknowledgments:** This SD was developed with support from NIAP Technical Community members, with representatives from industry, government agencies, Common Criteria Test Laboratories, and members of academia. ## **Table of Contents** - 1 Introduction - 1.1 Technology Area and Scope of Supporting Document - 1.2 Structure of the Document - 1.3 Terms - 1.3.1 Common Criteria Terms - 1.3.2 Technical Terms - 2 Evaluation Activities for SFRs - 2.1 TOE SFR Evaluation Activities - 2.1.1 QQQQ - 2.1.2 QQQQ - 2.1.3 Security Management (FMT) - 2.1.4 Security Audit (FAU) - 2.2 Evaluation Activities for Optional SFRs - 2.2.1 QQQQ - 2.2.2 Security Audit (FAU) 2.3 Evaluation Activities for Selection-Based SFRs 2.3.1 QQQQ 2.4 Evaluation Activities for Objective SFRs 2.4.1 QQQQ 3 Evaluation Activities for SARs 3.1 Class ADV: Development 3.2 Class AGD: Guidance Documentation 3.3 Class ALC: Life-cycle Support 3.4 Class ATE: Tests 3.5 Class AVA: Vulnerability Assessment 4 Required Supplementary Information ## 1 Introduction Appendix A - References ## 1.1 Technology Area and Scope of Supporting Document The scope of the Collaborative Protection Profile for QQQQ is to describe the security functionality of products in terms of [CC] and to define functional and assurance requirements for them. Although Evaluation Activities are defined mainly for the evaluators to follow, in general they also help developers to prepare for evaluation by identifying specific requirements for their TOE. The specific requirements in Evaluation Activities may in some cases clarify the meaning of Security Functional Requirements (SFR), and may identify particular requirements for the content of Security Targets (ST) (especially the TOE Summary Specification), user guidance documentation, and possibly supplementary information (e.g. for entropy analysis or cryptographic key management architecture). ## 1.2 Structure of the Document Evaluation Activities can be defined for both SFRs and Security Assurance Requirements (SAR), which are themselves defined in separate sections of the SD. If any Evaluation Activity cannot be successfully completed in an evaluation, then the overall verdict for the evaluation is a 'fail'. In rare cases there may be acceptable reasons why an Evaluation Activity may be modified or deemed not applicable for a particular TOE, but this must be approved by the Certification Body for the evaluation. In general, if all Evaluation Activities (for both SFRs and SARs) are successfully completed in an evaluation then it would be expected that the overall verdict for the evaluation is a 'pass'. To reach a 'fail' verdict when the Evaluation Activities have been successfully completed would require a specific justification from the evaluator as to why the Evaluation Activities were not sufficient for that TOE. Similarly, at the more granular level of assurance components, if the Evaluation Activities for an assurance component and all of its related SFR Evaluation Activities are successfully completed in an evaluation then it would be expected that the verdict for the assurance component is a 'pass'. To reach a 'fail' verdict for the assurance component when these Evaluation Activities have been successfully completed would require a specific justification from the evaluator as to why the Evaluation Activities were not sufficient for that TOE. ## **1.3 Terms** The following sections list Common Criteria and technology terms used in this document. ## 1.3.1 Common Criteria Terms | Assurance | Grounds for confidence that a TOE meets the SFRs [CC]. | |--|---| | Base
Protection
Profile (Base-
PP) | Protection Profile used as a basis to build a PP-Configuration. | | Collaborative
Protection
Profile (cPP) | A Protection Profile developed by international technical communities and approved by multiple schemes. | | Common
Criteria (CC) | Common Criteria for Information Technology Security Evaluation (International Standard ISO/IEC 15408). | | Common
Criteria
Testing
Laboratory | Within the context of the Common Criteria Evaluation and Validation Scheme (CCEVS), an IT security evaluation facility accredited by the National Voluntary Laboratory Accreditation Program (NVLAP) and approved by the NIAP Validation Body to conduct Common Criteria-based evaluations. | | Common
Evaluation
Methodology
(CEM) | Common Evaluation Methodology for Information Technology Security Evaluation. | |--|---| | Distributed
TOE | A TOE composed of multiple components operating as a logical whole. | | Extended
Package (EP) | A deprecated document form for collecting SFRs that implement a particular protocol, technology, or functionality. See Functional Packages. | | Functional
Package (FP) | A document that collects SFRs for a particular protocol, technology, or functionality. | | Operational
Environment
(OE) | Hardware and software that are outside the TOE boundary that support the TOE functionality and security policy. | | Protection
Profile (PP) | An implementation-independent set of security requirements for a category of products. | | Protection
Profile
Configuration
(PP-
Configuration) | A comprehensive set of security requirements for a product type that consists of at least one Base-PP and at least one PP-Module. | | Protection
Profile Module
(PP-Module) | An implementation-independent statement of security needs for a TOE type complementary to one or more Base-PPs. | | Security
Assurance
Requirement
(SAR) | A requirement to assure the security of the TOE. | | Security
Functional
Requirement
(SFR) | A requirement for security enforcement by the TOE. | | Security
Target (ST) | A set of implementation-dependent security requirements for a specific product. | | Target of
Evaluation
(TOE) | The product under evaluation. | | TOE Security
Functionality
(TSF) | The security functionality of the product under evaluation. | | TOE Summary
Specification
(TSS) | A description of how a TOE satisfies the SFRs in an ST. | ## 1.3.2 Technical Terms | Address Space
Layout
Randomization
(ASLR) | An anti-exploitation feature which loads memory mappings into unpredictable locations. ASLR makes it more difficult for an attacker to redirect control to code that they have introduced into the address space of a process. | |--|--| | Administrator | An administrator is responsible for management activities, including setting policies that are applied by the enterprise on the operating system. This administrator could be acting remotely through a management server, from which the system receives configuration policies. An administrator can enforce settings on the system which cannot be overridden by non-administrator users. | | Application (app) | Software that runs on a platform and performs tasks on behalf of the user or owner of the platform, as well as its supporting documentation. | | Application
Programming
Interface (API) | A specification of routines, data structures, object classes, and variables that allows an application to make use of services provided by another software component, such as a library. APIs are often provided for a set of libraries included with the platform. | | Credential | Data that establishes the identity of a user, e.g. a cryptographic key or password. | |--|--| | Critical
Security
Parameters
(CSP) | Information that is either user or system defined and is used to operate a cryptographic module in processing encryption functions including cryptographic keys and authentication data, such as passwords, the disclosure or modification of which can compromise the security of a cryptographic module or the security of the information protected by the module. | | DAR
Protection | Countermeasures that prevent attackers, even those with physical access, from extracting data from non-volatile storage. Common techniques include data encryption and wiping. | | Data
Execution
Prevention
(DEP) | An anti-exploitation feature of modern operating systems executing on modern computer hardware, which enforces a non-execute permission on pages of memory. DEP prevents pages of memory from containing both data and instructions, which makes it more difficult for an attacker to introduce and execute code. | | Developer | An entity that writes OS software. For the purposes of this document, vendors and developers are the same. | | General
Purpose
Operating
System | A class of OSes designed to support a wide-variety of workloads consisting of many concurrent applications or services. Typical characteristics for OSes in this class include support for third-party applications, support for multiple users, and security separation between users and their respective resources. General Purpose Operating Systems also lack the real-time constraint that defines Real Time Operating Systems (RTOS). RTOSes typically power routers, switches, and embedded devices. | | Host-based
Firewall | A software-based firewall implementation running on the OS for filtering inbound and outbound network traffic to and from processes running on the OS. | | Operating
System (OS) | Software that manages physical and logical resources and provides services for applications. The terms TOE and OS are interchangeable in this document. | | Personally
Identifiable
Information
(PII) | Any information about an individual maintained by an agency, including, but not limited to, education, financial transactions, medical history, and criminal or employment history and information which can be used to distinguish or trace an individual's identity, such as their name, social security number, date and place of birth, mother's maiden name, biometric records, etc., including any other personal information which is linked or linkable to an individual.[OMB] | | Sensitive Data | Sensitive data may include all user or enterprise data or may be specific application data such as PII, emails, messaging, documents, calendar items, and contacts. Sensitive data must minimally include credentials and keys. Sensitive data shall be identified in the OS's TSS by the ST author. | | User | A user is subject to configuration policies applied to the operating system by administrators. On some systems under certain configurations, a normal user can temporarily elevate privileges to that of an administrator. At that time, such a user should be considered an administrator. | | Virtual
Machine (VM) | Blah Blah Blah | ## 2 Evaluation Activities for SFRs The EAs presented in this section capture the actions the evaluator performs to address technology specific aspects covering specific SARs (e.g. ASE_TSS.1, ADV_FSP.1, AGD_OPE.1, and ATE_IND.1) – this is in addition to the CEM workunits that are performed in Section 3 Evaluation Activities for SARs. Regarding design descriptions (designated by the subsections labeled TSS, as well as any required supplementary material that may be treated as proprietary), the evaluator must ensure there is specific information that satisfies the EA. For findings regarding the TSS section, the evaluator's verdicts will be associated with the CEM workunit ASE_TSS.1-1. Evaluator verdicts associated with the supplementary evidence will also be associated with ASE_TSS.1-1, since the requirement to provide such evidence is specified in ASE in the PP. For ensuring the guidance documentation provides sufficient information for the administrators/users as it pertains to SFRs, the evaluator's verdicts will be associated with CEM workunits ADV_FSP.1-7, AGD_OPE.1-4, and AGD_OPE.1-5. Finally, the subsection labeled Tests is where the authors have determined that testing of the product in the context of the associated SFR is necessary. While the evaluator is expected to develop tests, there may be instances where it is more practical for the developer to construct tests, or where the developer may have existing tests. Therefore, it is acceptable for the evaluator to witness developer-generated tests in lieu of executing the tests. In this case, the evaluator must ensure the developer's tests are executing both in the manner declared by the developer and as mandated by the EA. The CEM workunits that are associated with the EAs specified in this section are: ATE_IND.1-3, ATE_IND.1-4, ATE_IND.1-5, ATE_IND.1-6, and ATE_IND.1-7. ## 2.1 TOE SFR Evaluation Activities ## 2.1.1 QQQQ ## FOO_FOO.1 Foo Foo FOO FOO.1 The following content should be included if: • pizza is selected from FOO_FOO.1.1 Check for anchovies Specific to the componenet **TSS** **ABC** FOO FOO.1.1 Specific to the element **TSS** ABC ## FOO_BAR.1 Foo Bar FOO_BAR.1 SomethingSomething **TSS** ABC Guidance Some guidance ## 2.1.2 QQQQ ### FQQ_QQQ.1 QQQQQ FQQ QQQ.1 **TSS** Activities assoiated with the TSS. #### Guidance Activities assoiated with guidance **Tests** • Test 1: Make shadow puppets. Test 1.1This is the motivation behind the tests. Evidence: A warm fuzzy feeling Activities assoiated with the Tests. The following content should be included if: • For virtual TOEs Great tests for something virtual. The following content should be included if: • For physical/imaginary TOEs Great tests for something tangible or in my mind. ## 2.1.3 Security Management (FMT) ## FMT_SMF.1/HOST Specification of Management Functions (EDR Management of Host Agent) FMT_SMF.1/HOST TSS The evaluator shall verify the ST contains a list of roles and what functions they can perform. The evaluator shall verify the list matches the chart in the requirement. #### Guidance The evaluator shall review the operational guidance to verify that the EDR has documented capabilities to perform the management functions. #### Tests The evaluator shall perform the below tests: - Test 2: The evaluator shall modify the time frame for sending Host Agent data to the EDR and verify that an affected Host Agent is sending data at the intended interval. - Test 3: The evaluator shall tag or categorize a group of individual endpoint systems and verify that the tag or categorization persists within the EDR management dashboard for other users. - Test 4: The evaluator shall attempt each function with each role and verify access conforms with the chart in the requirement. **Test 5**This is the motivation behind the tests. **Evidence:**A check should appear. ## 2.1.4 Security Audit (FAU) ## **FAU GEN.1 Audit Data Generation** ### FAU GEN.1 #### **TSS** The evaluator shall check the TSS and ensure that it lists all of the auditable events and provides a format for audit records. Each audit record format type shall be covered, along with a brief description of each field. The evaluator shall check to make sure that every audit event type mandated by the PP is described in the TSS. #### Guidance The evaluator shall also make a determination of the administrative actions that are relevant in the context of this PP. The evaluator shall examine the administrative guide and make a determination of which administrative commands, including subcommands, scripts, and configuration files, are related to the configuration (including enabling or disabling) of the mechanisms implemented in the TOE that are necessary to enforce the requirements specified in the PP. The evaluator shall document the methodology or approach taken while determining which actions in the administrative guide are security-relevant with respect to this PP. #### **Tests** The evaluator shall test the TOE's ability to correctly generate audit records by having the TOE generate audit records for the events listed and administrative actions. For administrative actions, the evaluator shall test that each action determined by the evaluator above to be security relevant in the context of this PP is auditable. When verifying the test results, the evaluator shall ensure the audit records generated during testing match the format specified in the administrative guide, and that the fields in each audit record have the proper entries. Note that the testing here can be accomplished in conjunction with the testing of the security mechanisms directly. See Table t-audit-mandatory for more information. ### FAU_SAR.1 Audit Review ## FAU SAR.1 ### Guidance The evaluator shall review the operational guidance for the procedure on how to review the audit records. The evaluator shall verify that the audit records provide all of the information specified in FAU_GEN.1 and that this information is suitable for human interpretation. The assurance activity for this requirement is performed in conjunction with the assurance activity for FAU_GEN.1. ## **FAU STG.1 Protected Audit Trail Storage** ## FAU STG.1 The evaluator shall ensure that the TSS describes how the audit records are protected from unauthorized modification or deletion. The evaluator shall ensure that the TSS describes the conditions that must be met for authorized deletion of audit records. The evaluator shall perform the following tests: ### **Tests** - Test 6: The evaluator shall access the audit trail as an unauthorized Administrator and attempt to modify and delete the audit records. The evaluator shall verify that these attempts fail. - Test 7: The evaluator shall access the audit trail as an authorized Administrator and attempt to delete the audit records. The evaluator shall verify that these attempts succeed. The evaluator shall verify that only the records authorized for deletion are deleted. ## FAU_STG_EXT.1 Off-Loading of Audit Data #### FAU STG EXT.1 Protocols used for implementing the trusted channel must be selected in FTP ITC EXT.1. #### TSS The evaluator shall examine the TSS to ensure it describes the means by which the audit data are transferred to the external audit server, and how the trusted channel is provided. The evaluator shall examine the TSS to ensure it describes what happens when the local audit data store is full. #### Guidance The evaluator shall examine the operational guidance to ensure it describes how to establish the trusted channel to the audit server, as well as describe any requirements on the audit server (particular audit server protocol, version of the protocol required, etc.), as well as configuration of the TOE needed to communicate with the audit server. The evaluator shall also examine the operational guidance to determine that it describes the relationship between the local audit data and the audit data that are sent to the audit log server. For example, when an audit event is generated, is it simultaneously sent to the external server and the local store, or is the local store used as a buffer and "cleared" periodically by sending the data to the audit server. #### **Tests** Testing of the trusted channel mechanism is to be performed as specified in the assurance activities for FTP ITC EXT.1. The evaluator shall perform the following test for this requirement: • Test 8: The evaluator shall establish a session between the TOE and the audit server according to the configuration guidance provided. The evaluator shall then examine the traffic that passes between the audit server and the TOE during several activities of the evaluator's choice designed to generate audit data to be transferred to the audit server. The evaluator shall observe that these data are not able to be viewed in the clear during this transfer, and that they are successfully received by the audit server. The evaluator shall record the particular software (name, version) used on the audit server during testing. The evaluator shall perform operations that generate audit data and verify that this data is stored locally. The evaluator shall perform operations that generate audit data until the local storage space is exceeded and verifies that the TOE complies with the behavior defined in the ST for FAU STG EXT.1.2. ## 2.2 Evaluation Activities for Optional SFRs ## 2.2.1 QQQQ FQQ_QQQ.2 TQQQQQ FQQ QQQ.2 **TSS** Activities assoiated with the TSS. ## 2.2.2 Security Audit (FAU) ## FAU_ARP.1 Security Audit Automatic Response FAU_ARP.1 #### **Tests** The evaluator shall generate a potential security violation as defined in FAU_SAA.1 and verify that each action in the assignment in FAU_ARP.1.1 is performed by the TSF as a result. The evaluator shall perform this action for each security violation that is defined in FAU_SAA.1. #### **FAU SAA.1 Security Audit Analysis** FAU SAA.1 ### **Tests** The evaluator shall cause each combination of auditable events defined in FAU_SAA.1.2 to occur, and verify that a potential security violation is indicated by the TSF. ## 2.3 Evaluation Activities for Selection-Based SFRs ## 2.3.1 QQQQ FQQ_QQQ.4 UQQQQQ FQQ_QQQ.4 TSS Activities assoiated with the TSS. ## 2.4 Evaluation Activities for Objective SFRs ## 2.4.1 QQQQ FQQ_QQQ.3 *Guidance*Activities assoiated with guidance ## 3 Evaluation Activities for SARs # 3.1 Class ADV: Development ADV_FSP.1 Basic Functional Specification (ADV_FSP.1) #### ADV FSP.1 There are no specific assurance activities associated with these SARs, except ensuring the information is provided. The functional specification documentation is provided to support the evaluation activities described in Section 5.1 Security Functional Requirements, and other activities described for AGD, ATE, and AVA SARs. The requirements on the content of the functional specification information is implicitly assessed by virtue of the other assurance activities being performed; if the evaluator is unable to perform an activity because there is insufficient interface information, then an adequate functional specification has not been provided. ## 3.2 Class AGD: Guidance Documentation ## **AGD OPE.1 Operational User Guidance (AGD OPE.1)** #### AGD OPE.1 Some of the contents of the operational guidance are verified by the assurance activities in Section 5.1 Security Functional Requirements and evaluation of the OS according to the [CEM]. The following additional information is also required. If cryptographic functions are provided by the OS, the operational guidance shall contain instructions for configuring the cryptographic engine associated with the evaluated configuration of the OS. It shall provide a warning to the administrator that use of other cryptographic engines was not evaluated nor tested during the CC evaluation of the OS. The documentation must describe the process for verifying updates to the OS by verifying a digital signature – this may be done by the OS or the underlying platform. The evaluator will verify that this process includes the following steps: Instructions for obtaining the update itself. This should include instructions for making the update accessible to the OS (e.g., placement in a specific directory). Instructions for initiating the update process, as well as discerning whether the process was successful or unsuccessful. This includes generation of the hash/digital signature. The OS will likely contain security functionality that does not fall in the scope of evaluation under this PP. The operational guidance shall make it clear to an administrator which security functionality is covered by the evaluation activities. ## AGD_PRE.1 Preparative Procedures (AGD_PRE.1) ## AGD PRE.1 As indicated in the introduction above, there are significant expectations with respect to the documentation—especially when configuring the operational environment to support OS functional requirements. The evaluator shall check to ensure that the guidance provided for the OS adequately addresses all platforms claimed for the OS in the ST. # 3.3 Class ALC: Life-cycle Support ## ALC_CMC.1 Labeling of the TOE (ALC_CMC.1) ### ALC CMC.1 The evaluator will check the ST to ensure that it contains an identifier (such as a product name/version number) that specifically identifies the version that meets the requirements of the ST. Further, the evaluator will check the AGD guidance and OS samples received for testing to ensure that the version number is consistent with that in the ST. If the vendor maintains a web site advertising the OS, the evaluator will examine the information on the web site to ensure that the information in the ST is sufficient to distinguish the product. ## ALC_CMS.1 TOE CM Coverage (ALC_CMS.1) ## ALC_CMS.1 The "evaluation evidence required by the SARs" in this PP is limited to the information in the ST coupled with the guidance provided to administrators and users under the AGD requirements. By ensuring that the OS is specifically identified and that this identification is consistent in the ST and in the AGD guidance (as done in the assurance activity for ALC CMC.1), the evaluator implicitly confirms the information required by this component. Life-cycle support is targeted aspects of the developer's life-cycle and instructions to providers of applications for the developer's devices, rather than an in-depth examination of the TSF manufacturer's development and configuration management process. This is not meant to diminish the critical role that a developer's practices play in contributing to the overall trustworthiness of a product; rather, it's a reflection on the information to be made available for evaluation. The evaluator will ensure that the developer has identified (in guidance documentation for application developers concerning the targeted platform) one or more development environments appropriate for use in developing applications for the developer's platform. For each of these development environments, the developer shall provide information on how to configure the environment to ensure that buffer overflow protection mechanisms in the environment(s) are invoked (e.g., compiler and linker flags). The evaluator will ensure that this documentation also includes an indication of whether such protections are on by default, or have to be specifically enabled. The evaluator will ensure that the TSF is uniquely identified (with respect to other products from the TSF vendor), and that documentation provided by the developer in association with the requirements in the ST is associated with the TSF using this unique identification. ## ALC_TSU_EXT.1 Timely Security Updates #### ALC TSU EXT.1 The evaluator will verify that the TSS contains a description of the timely security update process used by the developer to create and deploy security updates. The evaluator will verify that this description addresses the entire application. The evaluator will also verify that, in addition to the OS developer's process, any third-party processes are also addressed in the description. The evaluator will also verify that each mechanism for deployment of security updates is described. The evaluator will verify that, for each deployment mechanism described for the update process, the TSS lists a time between public disclosure of a vulnerability and public availability of the security update to the OS patching this vulnerability, to include any third-party or carrier delays in deployment. The evaluator will verify that this time is expressed in a number or range of days. The evaluator will verify that this description includes the publicly available mechanisms (including either an email address or website) for reporting security issues related to the OS. The evaluator shall verify that the description of this mechanism includes a method for protecting the report either using a public key for encrypting email or a trusted channel for a website. ## 3.4 Class ATE: Tests ## ATE_IND.1 Independent Testing - Conformance (ATE_IND.1) ### ATE IND.1 The evaluator will prepare a test plan and report documenting the testing aspects of the system, including any application crashes during testing. The evaluator shall determine the root cause of any application crashes and include that information in the report. The test plan covers all of the testing actions contained in the [CEM] and the body of this PP's Assurance Activities. While it is not necessary to have one test case per test listed in an Assurance Activity, the evaluator must document in the test plan that each applicable testing requirement in the ST is covered. The test plan identifies the platforms to be tested, and for those platforms not included in the test plan but included in the ST, the test plan provides a justification for not testing the platforms. This justification must address the differences between the tested platforms and the untested platforms, and make an argument that the differences do not affect the testing to be performed. It is not sufficient to merely assert that the differences have no affect; rationale must be provided. If all platforms claimed in the ST are tested, then no rationale is necessary. The test plan describes the composition of each platform to be tested, and any setup that is necessary beyond what is contained in the AGD documentation. It should be noted that the evaluator is expected to follow the AGD documentation for installation and setup of each platform either as part of a test or as a standard pre-test condition. This may include special test drivers or tools. For each driver or tool, an argument (not just an assertion) should be provided that the driver or tool will not adversely affect the performance of the functionality by the OS and its platform. This also includes the configuration of the cryptographic engine to be used. The cryptographic algorithms implemented by this engine are those specified by this PP and used by the cryptographic protocols being evaluated (IPsec, TLS). The test plan identifies high-level test objectives as well as the test procedures to be followed to achieve those objectives. These procedures include expected results. The test report (which could just be an annotated version of the test plan) details the activities that took place when the test procedures were executed, and includes the actual results of the tests. This shall be a cumulative account, so if there was a test run that resulted in a failure; a fix installed; and then a successful re-run of the test, the report would show a "fail" and "pass" result (and the supporting details), and not just the "pass" result. # 3.5 Class AVA: Vulnerability Assessment ## AVA_VAN.1 Vulnerability Survey (AVA_VAN.1) ### AVA_VAN.1 The evaluator will generate a report to document their findings with respect to this requirement. This report could physically be part of the overall test report mentioned in ATE_IND, or a separate document. The evaluator performs a search of public information to find vulnerabilities that have been found in similar applications with a particular focus on network protocols the application uses and document formats it parses. The evaluator documents the sources consulted and the vulnerabilities found in the report. For each vulnerability found, the evaluator either provides a rationale with respect to its non-applicability, or the evaluator formulates a test (using the guidelines provided in ATE_IND) to confirm the vulnerability, if suitable. Suitability is determined by assessing the attack vector needed to take advantage of the vulnerability. If exploiting the vulnerability requires expert skills and an electron microscope, for instance, then a test would not be suitable and an appropriate justification would be formulated. # 4 Required Supplementary Information This Supporting Document has no required supplementary information beyond the ST, operational guidance, and testing. # **Appendix A - References** | Identifier | Title | |------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | [CEM] | Common Evaluation Methodology for Information Technology Security - Evaluation Methodology, CCMB-2012-09-004, Version 3.1, Revision 4, September 2012. | | [CESG] | CESG - End User Devices Security and Configuration Guidance | | [CSA] | Computer Security Act of 1987, H.R. 145, June 11, 1987. | | [OMB] | Reporting Incidents Involving Personally Identifiable Information and Incorporating the Cost for Security in Agency Information Technology Investments, OMB M-06-19, July 12, 2006. |