
PP-Module for File Encryption

Version: 1.0

2019-07-25

National Information Assurance Partnership

Revision History

Version Date Comment

v 1.0 2019-07-25 Initial Release

Contents

1 Introduction
1.1 Overview
1.2 Terms

1.2.1 Common Criteria Terms
1.2.2 Technical Terms

1.3 Compliant Targets of Evaluation
1.3.1 TOE Boundary

1.4 Use Cases
2 Conformance Claims
3 Security Problem Description

3.1 Threats
3.2 Assumptions
3.3 Organizational Security Policies

4 Security Objectives
4.1 Security Objectives for the TOE
4.2 Security Objectives for the Operational Environment
4.3 Security Objectives Rationale

5 Security Requirements
5.1 App PP Security Functional Requirements Direction

5.1.1 Modified SFRs
5.2 TOE Security Functional Requirements

5.2.1 Cryptographic Support (FCS)
5.2.2 User Data Protection (FDP)
5.2.3 Identification and Authentication (FIA)
5.2.4 Security Management (FMT)
5.2.5 Protection of the TSF (FPT)

6 Consistency Rationale
6.1 Application Software Protection Profile

6.1.1 Consistency of TOE Type
6.1.2 Consistency of Security Problem Definition
6.1.3 Consistency of Objectives
6.1.4 Consistency of Requirements

Appendix A - Optional SFRs
Appendix B - Selection-based SFRs
Appendix C - Objective SFRs
Appendix D - Extended Component Definitions

D.1 Background and Scope
D.2 Extended Component Definitions

Appendix E - Key Management Description
Appendix F - Bibliography
Appendix G - Acronyms

1 Introduction

1.1 Overview

The scope of the File Encryption PP-Module is to describe the security functionality of a file encryption product in terms of [CC]
and to define functional and assurance requirements for such products. This PP-Module is intended for use with the following
Base-PP

Application Software Protection Profile, Version 1.3

This Base-PP is valid because a file encryption product is a 3rd party application or application included with a operating
system.

File encryption is the process of encrypting individual files or sets of files (or volumes, or containers, etc.) on an end user
device and permitting access to the encrypted data only after proper authentication is provided. Encryption products that
conform to this PP-Module must render information inaccessible to anyone (or, in the case of other software on the machine,
anything) that does not have the proper authentication credential. The encrypted files may be on a local machine or may be
sent to other devices.

The foremost security objective of file encryption is to force an adversary to perform a cryptographic exhaust against a
prohibitively large key space. Technology is changing at a rapid rate and the definition of mobile devices and traditional
laptop/PC devices is quickly merging. Requirements can diverge slightly for Mobile vs Laptop/PC and the Evaluation Activities
will describe any differences. Either of these use cases may be an enterprise managed file encryption client. Some of the
security functionality may be provided by the OE. The vendor is required to provide configuration guidance (AGD_PRE,
AGD_OPE) to correctly install and administer the TOE for every operational environment supported.

The data that is to be secured by the encryption product is encrypted using a File Encryption Key (FEK). A file encryptor may
have zero or more Key Encryption Keys (KEKs) that protect (encrypt) the FEK. The number of keys and the types of keys may
vary, but the design should follow one of the following models:

1. Condition a Password/Passphrase directly into a FEK
2. Condition a Password/Passphrase into a KEK that is used to encrypt the randomly generated FEK directly or through a

chaining of more than one KEK (these KEKs would be randomly generated).
3. Use a software certificate or an external token to protect the FEK.

From a terminology standpoint, a KEK is either a symmetric key or an asymmetric key pair, and is used for both encryption and
decryption of the FEK. If a distinction needs to be made between the public key (which encrypts the FEK) and the private key
(which decrypts the FEK), this is done in the requirements and the evaluation activities.

The TOE may be capable of supporting multiple users with different authorization factors, such that different users are able to
use the same platform and not be able to read each other's encrypted files. The TOE may also support the ability for users to
share an encrypted file without sharing an authorization factor, but this is not required. In order to claim this capability, the TOE
must allow sharing of at least one encrypted resource among different users of the TOE who possess different authorization
factors (e.g., two different smart cards, two different passwords, one using a password and another using a smart card). If this
capability is supported, then the ST author adds FIA_FCT_EXT.1.1.

Authorization
One or more authorization factors must be established before data can be encrypted. This authorization factor(s) must be
presented to the file encryption product in order for the user to request that the product decrypt the data. Authorization factors
may be uniquely associated with individual users or may be associated with a community of users. The TOE is not required to
support multiple types of authorization factors (e.g., both passphrases and external authorization factors). If the ST author
defines additional authorization factors, they must be fully documented and cannot diminish the strength of the passphrase
and/or external token authorization factors.

The password/passphrase authorization factors must be conditioned such that they are at least the same size (bit length) as
the key they are protecting. While this PP-Module does not dictate how these authentication factors are created, a good
operational practice is for an administrator to generate the password or passphrase to ensure sufficient entropy. Passphrases
are preferred over passwords, since it is easier for users to remember and type in a sequence of words than recall a password
and type in a long string of random characters.

Administration
The base requirements of the TOE do not require the TOE to maintain an administrative role. Typically, administrators possess
privilege to invoke functionality on the TOE that is not available to general users. For stand alone file encryption products,
however, once the product is installed there should be little need for administrative involvement. For enterprise managed file
encryption products, the TOE may be remotely administered.

Data Authentication (optional)
Because modification of ciphertext data for certain modes of encryption will enable unidentified plaintext manipulation, care
must be taken by the TOE to mitigate against forged or maliciously modified ciphertext data. The PP-Module defines
requirements for how the TOE must provide data authentication services, allowing the TOE to implement authenticated block
cipher, keyed hash function or asymmetric signing features. Depending on the implementation, the TOE will be responsible for
meeting at least one of the aforementioned requirements. In all cases, unsuccessful authentication of the data should not allow
the user to see the decrypted ciphertext and notification should be provided to the user if such an event were to occur.

A keyed hashing service may also be used to accomplish data authentication. This will involve using an approved keyed
hashing service in accordance with FCS_COP.1(4) and proper protection of the File Authentication Key (FAK); the FAK being
the secret value used as input to the keyed hash function. FAKs should be numerically different from the FEK, but will be
protected in all of the same manners as the FEK. The primary requirement dictating implementation of data authentication
using a keyed hash function is FDP_AUT_EXT.2.

Lastly, asymmetric signing in conjunction with a secure hash function may be used to authenticate the data. The
implementation must use an approved signing algorithm in accordance with FCS_COP.1(3) (from the [AppPP]) and an
approved secure hashing function in accordance with FCS_COP.1(2) (from the [AppPP]). The primary requirement addressing
data authentication via asymmetric signing is FDP_AUT_EXT.3.

The TOE and Its Supporting Environment:
Since the TOE is purely a software solution, it must rely on the TOE Operational Environment (system hardware, firmware, and
operating system) for its execution domain and its proper usage. The vendor is expected to provide sufficient installation and
configuration instructions (for each platform listed in the ST) to identify Operational Environment(s) with the necessary features
and to provide instructions for how to configure it correctly and securely.

The PP-Module contains requirements (Section 5 that must be met by either the TOE or the platform on which it operates. A
"platform" is defined as a separate entity whose functions may be used by the TOE, but is not part of the TOE. A third-party
library used by the TOE is not considered part of the TOE's "platform", but (for instance) cryptographic functionality that is built
into an Operating System on which the TOE executes can be considered part of the platform.

Likewise, an external entity (such as a smart card) that performs cryptographic operations with respect to the FEK would also
be considered a part of the "TOE Platform".

The ST author will make the appropriate selection based on where that element is implemented. It is allowable for some
elements in a component to be implemented by the TOE, while other elements in that same component may be implemented
by the platform; in these cases, further guidance is given in the application notes and Supporting Documentation.

In some cases, the TOE vendor will have to provide specific configuration guidance for the Operational Environment to enable
the TOE to meet its security objectives. These include:
For non-mobile systems:

Instructions for how to configure the operational environment so that the system powers down completely after a period of
user inactivity for every operating system that the product supports.
Instructions for how to disable power managed state (e.g., hibernate/sleep) capabilities.

For mobile systems:
Instructions for how to configure the operational environment to provide necessary behavior in support of TOE
functionality when transition to a locked state after inactivity period and manually engaging the lock functionality.

It should be noted that if the TOE possesses the capability to correctly protect information in one or more of an underlying
platform's power managed modes, they can use the FDP_PM_EXT.1 requirement in Appendix A.

Authorized users of the TOE are those users possessing valid authorization factors for the TOE. While some of these functions
specified in the PP-Module might be considered "administrative" functions for other types of TOEs, for file encryption products it
is the expectation that all of these functions can be performed by the end user of the software.

1.2 Terms

1.2.1 Common Criteria Terms

Common Criteria (CC) Common Criteria for Information Technology Security Evaluation.

Protection Profile (PP) An implementation-independent set of security requirements for a category of products.

Protection Profile Configuration
(PP-Configuration)

A comprehensive set of security requirements for a product type that consists of at least
one Base-PP and at least one PP-Module.

Protection Profile Module (PP-
Module)

An implementation-independent statement of security needs for a TOE type
complementary to one or more Base Protection Profiles.

Security Assurance Requirement
(SAR)

A requirement to assure the security of the TOE.

Security Functional Requirement
(SFR)

A requirement for security enforcement by the TOE.

Security Target (ST) A set of implementation-dependent security requirements for a specific product.

Target of Evaluation (TOE) The product under evaluation. In this case, file encryption software and its supporting
documentation.

TOE Security Functionality (TSF) The security functionality of the product under evaluation.

TOE Summary Specification
(TSS)

A description of how a TOE satisfies the SFRs in a ST.

1.2.2 Technical Terms

Administrator Authorized Users with higher privileges and typically handle configuration and management functions, such
as configuring and updating the TOE.

Authorization
factor (AF)

A value submitted by the user, present on the host, or present on a separate protected hardware physical
device used to establish that the user (and potentially the host) is in the community authorized to use the
TOE. The authorization factors are used to generate the KEK. Note that these AFs are not used to establish
the particular identity of the user.

Authorized A user who has been provided Authorization factors by the administrator to use the TOE.

User

Data
Encryption

The process of encrypting all user data written to volatile memory.

Deterministic
Random Bit
Generator
(DRBG)

A cryptographic algorithm that produces a sequence of bits from a secret initial seed value. Without
knowledge of the seed value, the output sequence should be unpredictable up to the security level of the
DRBG.

Entropy
Source

This cryptographic function provides a seed for a random bit generator by accumulating the outputs from one
or more noise sources. The functionality includes a measure of the minimum work required to guess a given
output and tests to ensure that the noise sources are operating properly.

File/Set of
files

The user data that is selected to be encrypted, which can include individual file encryption (with a FEK per
file) or a set of files encrypted with a single FEK.

File
Authentication
Key (FAK)

The secret value used as input when a keyed hash function is used to perform data authentication.

File
Encryption
Key (FEK)

The key that is used by the encryption algorithm to encrypt the selected user data on the host machine.

Key Chaining The method of using multiple layers of encryption keys to protect data. A top layer key encrypts a lower
layer key which encrypts the data; this method can have any number of layers.

Key
Encryption
Key (KEK)

The key that is used to encrypt another key.

Keying
Material

The KEK, FEK, authorization factors and random numbers or any other values from which keys are derived.

Key
Sanitization

A method of sanitizing encrypted data by securely overwriting the key, as described in the key destruction
requirement, that was encrypting the data.

Noise Source The component of an RBG that contains the non-deterministic, entropy-producing activity.

Operational
Environment

Hardware and software that are outside the TOE boundary that support the TOE functionality and security
policy, including the platform, its firmware, and the operating system.

Password A short string of characters used for authorization to the data on the device.

Passphrase A string of words that may be used for authorization to the data on the device.

Primary Key
Chain

The direct key chain from the authorization factor to the FEK.

Random Bit
Generator
(RBG)

A cryptographic function composed of an entropy source and DRBG that is invoked for random bits needed
to produce keying material.

Sensitive
Data

Any data of which the compromise with respect to loss, misuse, or unauthorized access to or modification of
could adversely affect the interest of the TOE user.

Shutdown Power down or unintentional loss of power of the TOE or platform.

Supplemental
Key Chain

Other key chains that add protection or functionality without compromising the security of the primary key
chain.

System files Files that reside on the host machine that are used in the operation of the file encryption software.

Temporary
File

A file created by an application for short term storage of sensitive data.

Trusted Host Source/destination host configured and maintained to provide the TOE with appropriate IT security
commensurate with the value of the user data protected by the TOE.

Unauthorized
User

A user who has not been authorized to use the TOE and decrypt encrypted user data.

User Data All data that originate on the host, or is derived from data that originate on the host, excluding system files
and signed firmware updates from the TOE manufacturer.

Volatile
memory

Memory that loses its content when power is turned off.

Zeroize This term is used to make a distinction between dereferencing a memory location and actively overwriting it
with a constant. Keying material needs to be overwritten when it is no longer needed.

1.3 Compliant Targets of Evaluation

This PP-Module specifically addresses encryption of a set of data. This PP-Module addresses the primary threat that an
unauthorized user will obtain access to a host machine containing encrypted information and be able to extract the sensitive
data through the process of decryption. The Target of Evaluation (TOE) defined in this PP-Module is an encryption product that
will inherently encrypt all of that data that the user selects to encrypt. For ease of explanation, "file" will frequently be used to
refer to the object that is encrypted (however, it could be any number of things - folders, volumes, containers, etc.).

1.3.1 TOE Boundary
The application, which consists of the software provided by its vendor, is installed onto the platform(s) it operates on. It
executes on the platform, which may be an operating system, hardware environment, a software based execution environment,
or some combination of these. Those platforms may themselves run within other environments, such as virtual machines or
operating systems, that completely abstract away the underlying hardware from the application. The TOE is not accountable for
security functionality that is implemented by platform layers that are abstracted away. Some evaluation activities are specific to
the particular platform on which the application runs, in order to provide precision and repeatability. The only platforms currently
recognized by [AppPP] and this module are those specified in SFR Evaluation Activities. To test on a platform for which there
are no EAs, a Vendor should contact NIAP with recommended EAs. NIAP will determine if the proposed platform is appropriate
for the PP and accept, reject, or develop EAs as necessary in coordination with the technical community.

The TOE includes any software in the application installation package, even those pieces that may extend or modify the
functionality of the underlying platform, such as kernel drivers. Some platforms come bundled with file encryption product and
these too should be considered subject to the requirements defined in this document although the expectation of formal
Common Criteria evaluation depends upon the national scheme. BIOS and other firmware, the operating system kernel, and
other systems software (and drivers) provided as part of the platform are outside the scope of this document.

1.4 Use Cases

[USE CASE 1] Unmanaged Endpoint
The traditional ability to encrypt files without external management and power down the machine and know the data is
securely protected.

[USE CASE 2] Managed Endpoint
The traditional ability to encrypt files and power down the machine and know the data is securely protected, while
communicating with an Enterprise Management server.

[USE CASE 3] Encrypted Distribution
The ability to encrypt a file on a machine and then send the encrypted file securely using a non-encrypted data in transit
method.

2 Conformance Claims

Conformance Statement
This PP-Module inherits exact conformance as required from the specified Base-PP and as defined in the [CC] and CEM
addenda for Exact Conformance, Selection-Based SFRs, and Optional SFRs (dated May 2017). This PP-Module is
conformant to Parts 2 (extended) and 3 (extended) of Common Criteria Version 3.1, Revision 5 [CC]. The following PPs
and PP-Modules are allowed to be specified in a PP-Configuration with this PP-Module.

PP-Module for VPN Client, Version 2.1
PP-Module for File Encryption Enterprise Management, Version 1.0

If claiming compliance to a PP-Configuration that includes multiple PP-Modules, the ST author must ensure any
duplicative SFRs are iterated using unique identifiers. This will allow the reader to easily determine which iteration applies
to each TOE component

3 Security Problem Description

The primary asset that is being protected is the sensitive user data stored on a system. The threat model thus focuses on a
host machine that has been compromised by an unauthorized user. This section addresses threats to the TOE only.

3.1 Threats

A threat consists of a threat agent, an asset, and an adverse action of that threat agent on that asset. The model in this PP-
Module only addresses risks that arise from the host machine being compromised by an unauthorized user.

For this PP-Module, the TOE is not expected to defend against all threats related to malicious software that may reside in user
data files. For instance, the TOE is not responsible for detecting malware in the data selected by the user for encryption (that is
a responsibility of the host environment). Once the file encryption product is operational in a host system, the threats against
the data from potentially malicious software on the host are also not in the threat model of this PP-Module. For example, there
are no requirements in this PP-Module addressing a malicious host capturing a password-based authorization factor, nor a
malicious process reading the memory of an application program that is operating on a decrypted file.

Note that this PP-Module does not repeat the threats identified in the [AppPP], though they all apply given the conformance and
hence dependence of this PP-Module on the [AppPP].

Note also that while the [AppPP] contains only threats to the ability of the TOE to provide its security functions, this PP-Module
focuses on threats to resources in the operational environment. Together the threats of [AppPP] and those defined in this PP-
Module define the comprehensive set of security threats addressed by a file encryption TOE.

T.UNAUTHORIZED_DATA_ACCESS
Unauthorized Data Access: An attacker has access to an account that is not permitted to decrypt files or has no access
and uses forensic tools for examination.

T.MANAGEMENT_ACCESS
Management Access: An authorized user may perform sensitive management functions without authorization or a
legitimate user may lack the ability to perform necessary security operations due to a lack of supported management
functionality.

T.KEYING_MATERIAL_COMPROMISE
Compromise of Keying Material: An attacker exploits a weakness in the random number generation, plaintext keys,
and other keying material to decrypt an encrypted file.

T.UNSAFE_AUTHFACTOR_VERIFICATION
Flawed Authentication Factor Verification: An attacker exploits a flaw in the validation or conditioning of the
authorization factor.

T.KEYSPACE_EXHAUST
Brute Force Attack: An attacker is able to brute force the keyspace of the algorithms used to force disclosure of
sensitive data.

T.PLAINTEXT_COMPROMISE
Plaintext Compromise: An attacker is able to uncover plaintext remains with forensic tools.

3.2 Assumptions

These assumptions are made on the Operational Environment in order to be able to ensure that the security functionality
specified in the PP-Module can be provided by the TOE. If the TOE is placed in an Operational Environment that does not meet
these assumptions, the TOE may no longer be able to provide all of its security functionality.

A.AUTH_FACTOR
An authorized user will be responsible for ensuring that all externally derived authorization factors have sufficient strength
and entropy to reflect the sensitivity of the data being protected. This can apply to password- or passphrase-based, ECC
CDH, and RSA authorization factors.

A.EXTERNAL_FEK_PROTECTION
External entities that implement ECC CDH or RSA that are used to encrypt and decrypt a FEK have the following
characteristics:

meet national requirements for the cryptographic mechanisms implemented
require authentication via a pin or other mechanisms prior to allowing access to protected information (the decrypted

FEK, or the private key)
implement anti-hammer provisions where appropriate (for example, when a pin is the authentication factor).

A.SHUTDOWN
An authorized user will not leave the machine in a mode where sensitive information persists in non-volatile storage.

A.STRONG_OE_CRYPTO
All cryptography implemented in the Operational Environment and used by the TOE will meet the requirements listed in
this PP-Module. This includes generation of external token authorization factors by a RBG.

A.FILE_INTEGRITY
When the file is in transit, it is not modified, otherwise if that possibility exists, the appropriate selections in Appendix B
are chosen for Data Authentication.

3.3 Organizational Security Policies

There are no Organizational Security Policies for the PP-Module.

4 Security Objectives

The Security Problem described in Section 3 Security Problem Description will be addressed by a combination of cryptographic
capabilities. Compliant TOEs will provide security functionality that addresses threats to the TOE. The following subsections
provide a description of the security objectives required to meet the threats previously discussed. The description of these
security objectives are in addition to that described in the [AppPP].

4.1 Security Objectives for the TOE

O.KEY_MATERIAL_PROTECTION
Protection of Key Material: The TOE must ensure that sensitive plaintext key material used in performing its operations
is cleared once it is no longer needed. Key material must be identified; its use and intermediate storage areas must also
be identified; and then those storage areas must be cleared in a timely manner and without interruptions. For example,
authorization factors are only needed until the KEK is formed; at that point, volatile memory areas containing the
authorization factors should be cleared.

Addressed by: FCS_CKM_EXT.4, FPT_KYP_EXT.1

O.FEK_SECURITY
Encryption Using a Strong FEK and KEK: In order to ensure that brute force attacks are infeasible, the TOE must
ensure that the cryptographic strength of the keys and authorization factors used to generate and protect the keys is
sufficient to withstand attacks in the near-to-mid-term future. Password/passphrase conditioning requirements are also
levied to help ensure that a brute force attack against these authorization factors (when used) has a similar level of
resistance.

Addressed by: FCS_COP.1(1) (from Base-PP), FCS_CKM_EXT.2, FCS_IV_EXT.1, FCS_KYC_EXT.1, FCS_VAL_EXT.1,
FCS_CKM_EXT.3 (selection-based), FCS_CKM_EXT.6 (selection-based), FCS_COP.1(5) (selection-based), FCS_COP.1(6) (selection-
based), FCS_COP.1(7) (selection-based), FCS_KDF_EXT.1 (selection-based), FCS_SMC_EXT.1 (selection-based), FCS_VAL_EXT.2
(selection-based)

O.WIPE_MEMORY
Removal of Plaintext Data: To address the threat of unencrypted copies of data being left in non-volatile memory or
temporary files where it may be accessed by an unauthorized user, the TOE will ensure that plaintext data it creates is
securely erased when no longer needed. The TOE's responsibility is to utilize the appropriate TOE platform method for
secure erasure, but the TOE is not responsible for verifying that the secure erasure occurred as this will be the
responsibility of the TOE platform.

Addressed by: FDP_PRT_EXT.1, FDP_PRT_EXT.2, FDP_PRT_EXT.3 (optional)

O.PROTECT_DATA
Protection of Data: The TOE will encrypt data to protect the data from unauthorized access. Encrypting the file or set of
files will protect the user data even when low-level tools that bypass operating system protections such as discretionary
and mandatory access controls are available to an attacker. Users that are authorized to access the data must provide
authorization factors to the TOE in order for the data to be decrypted and provided to the user.

The TOE will also optionally include data authentication functionality to protect data from unauthorized modification.

Addressed by: FCS_COP.1(1) (from Base-PP), FCS_IV_EXT.1, FDP_PRT_EXT.1, FDP_PRT_EXT.2, FCS_CKM_EXT.5 (optional),
FCS_COP_EXT.1 (optional), FDP_AUT_EXT.1 (optional), FDP_AUT_EXT.2 (optional), FDP_AUT_EXT.3 (optional), FDP_PM_EXT.1
(optional), FDP_PRT_EXT.3 (optional), FIA_FCT_EXT.1 (optional)

O.SAFE_AUTHFACTOR_VERIFICATION
Safe Authentication Factor Verification: In order to avoid exposing information that would allow an attacker to
compromise or weaken any factors in the chain keys generated or protected by the authorization factors, the TOE will
verify the valid authorization factor prior to the FEK being used to decrypt the data being protected.

Addressed by: FCS_VAL_EXT.1, FIA_AUT_EXT.1

O.MANAGE
The TOE will provide all the functions and facilities necessary to support the authorized administrators in their
management of the security of the TOE, and restrict these functions and facilities from unauthorized use.

Addressed by: FMT_MEC_EXT.1, FMT_SMF.1(2)

4.2 Security Objectives for the Operational Environment

The Operational Environment of the TOE implements technical and procedural measures to assist the TOE in correctly
providing its security functionality (which is defined by the security objectives for the TOE). The security objectives for the
Operational Environment consist of a set of statements describing the goals that the Operational Environment should achieve.
This section defines the security objectives that are to be addressed by the IT domain or by non-technical or procedural
means. The assumptions identified in Section 3 are incorporated as security objectives for the environment.

OE.AUTHORIZATION_FACTOR_STRENGTH
An authorized user will be responsible for ensuring that all externally derived authorization factors have sufficient strength
and entropy to reflect the sensitivity of the data being protected. This can apply to password or passphrase based, ECC
CDH, and RSA authorization factors.

OE.POWER_SAVE
The non-mobile operational environment must be configurable so that there exists at least one mechanism that will cause
the system to enter a safe power state (A.SHUTDOWN). Any such mechanism (e.g., sleep, hibernate) that does not
conform to this requirement must be capable of being disabled. The mobile operational environment must be configurable
such that there exists at least one mechanism that will cause the system to lock upon a period of time.

OE.STRONG_ENVIRONMENT_CRYPTO

The Operating environment will provide a cryptographic function capability that is commensurate with the requirements
and capabilities of the TOE.

4.3 Security Objectives Rationale

This section describes how the assumptions, threats, and organization security policies map to the security objectives.

Threat, Assumption, or OSP Security Objectives Rationale

T.UNAUTHORIZED_DATA_ACCESS O.PROTECT_DATA The threat
T.UNAUTHORIZED_DATA_ACCESS is
countered by O.PROTECT_DATA as this
provides for encryption of data.

T.MANAGEMENT_ACCESS O.MANAGE The threat
T.UNAUTHORIZED_DATA_ACCESS is
countered by O.MANAGE as this ensures
proper management functionality.

T.KEYING_MATERIAL_COMPROMISE O.KEY_MATERIAL_PROTECTION The threat
T.KEYING_MATERIAL_COMPROMISE is
countered by
O.KEY_MATERIAL_PROTECTION as this
provides for protection of keys.

T.UNSAFE_AUTHFACTOR_VERIFICATION O.SAFE_AUTHFACTOR_VERIFICATION The threat
T.UNSAFE_AUTHFACTOR_VERIFICATION
is countered by
O.SAFE_AUTHFACTOR_VERIFICATION as
this provides for properly supported
authentication factors.

T.KEYSPACE_EXHAUST O.FEK_SECURITY The threat T.KEYSPACE_EXHAUST is
countered by O.FEK_SECURITY as this
makes brute force attacks infeasible.

T.PLAINTEXT_COMPROMISE O.WIPE_MEMORY The threat T.PLAINTEXT_COMPROMISE is
countered by O.WIPE_MEMORY as this
provides data cleanup.

A.AUTH_FACTOR OE.AUTHORIZATION_FACTOR_STRENGTH The operational environment objective
OE.AUTHORIZATION_FACTOR_STRENGTH
is realized through A.AUTH_FACTOR.

A.EXTERNAL_FEK_PROTECTION OE.STRONG_ENVIRONMENT_CRYPTO The operational environment objective
OE.STRONG_ENVIRONMENT_CRYPTO is
realized through
A.EXTERNAL_FEK_PROTECTION.

A.SHUTDOWN OE.POWER_SAVE The operational environment objective
OE.POWER_SAVE is realized through
A.SHUTDOWN.

A.STRONG_OE_CRYPTO OE.STRONG_ENVIRONMENT_CRYPTO The operational environment objective
OE.STRONG_ENVIRONMENT_CRYPTO is
realized through A.STRONG_OE_CRYPTO.

A.FILE_INTEGRITY OE.STRONG_ENVIRONMENT_CRYPTO The operational environment objective
OE.STRONG_ENVIRONMENT_CRYPTO is
realized through A.STRONG_OE_CRYPTO.

FCS_CKM_EXT.2.1

FCS_CKM_EXT.2.2

5 Security Requirements

This chapter describes the security requirements which have to be fulfilled by the product under evaluation. Those
requirements comprise functional components from Part 2 and assurance components from Part 3 of [CC]. The following
notations are used:

Refinement operation (denoted by bold text or strikethrough text): is used to add details to a requirement (including
replacing an assignment with a more restrictive selection) or to remove part of the requirement that is made irrelevant
through the completion of another operation, and thus further restricts a requirement.
Selection (denoted by italicized text): is used to select one or more options provided by the [CC] in stating a requirement.
Assignment operation (denoted by italicized text): is used to assign a specific value to an unspecified parameter, such as
the length of a password. Showing the value in square brackets indicates assignment.
Iteration operation: are identified with a number inside parentheses (e.g. "(1)")

5.1 App PP Security Functional Requirements Direction

The TOE is expected to rely on some of the security functions implemented by the application as a whole and evaluated
against [AppPP]. The following section describes any modifications that the ST author must make to the SFRs defined in the
Base-PP in addition to what is mandated by section 5.2.

5.1.1 Modified SFRs

This PP-Module does not modify any SFRs defined by the App PP.

5.2 TOE Security Functional Requirements

The following section describes the SFRs that must be satisfied by any TOE that claims conformance to this PP-Module. These
SFRs must be claimed regardless of which PP-Configuration is used to define the TOE.

5.2.1 Cryptographic Support (FCS)

FCS_CKM_EXT.2 File Encryption Key (FEK) Generation

The TSF shall [selection:
accept FEK from an enterprise management server,
generate FEK cryptographic keys
[selection:

using a Random Bit Generator as specified in FCS_RBG_EXT.1 (from [AppPP])
and with entropy corresponding to the security strength of AES key sizes of
[selection: 128 bit, 256 bit],
derived from a password/passphrase that is conditioned as defined in
FCS_CKM_EXT.6

]
].

The TSF shall use a unique FEK for each file (or set of files) using the mechanism on the
client as specified in FCS_CKM_EXT.2.1.

Evaluation Activity

TSS
FCS_CKM_EXT.2.1: The evaluator shall review the TSS to determine that a description
covering how and when the FEKs are generated exists. The description must cover all
environments on which the TOE is claiming conformance, and include any preconditions
that must exist in order to successfully generate the FEKs. The evaluator shall verify that
the description of how the FEKs are generated is consistent with the instructions in the
AGD guidance, and any differences that arise from different platforms are taken into
account.

Conditional:
If 'using a Random Bit Generator' was selected, the evaluator shall verify that the TSS
describes how the functionality described by FCS_RBG_EXT.1 (from the [AppPP]) is
invoked to generate FEK. To the extent possible from the description of the RBG
functionality in FCS_RBG_EXT.1 (from [AppPP]), the evaluator shall determine that the
key size being requested is identical to the key size and mode to be used for the
decryption/encryption of the user data (FCS_COP.1(1)) (from [AppPP]).

Conditional:
If 'derived from a password/passphrase' is selected, the examination of the TSS section
is performed as part of FCS_CKM_EXT.6 evaluation activities.

FCS_CKM_EXT.2.2: The evaluator shall verify the TSS describes how a FEK is used for
a protected resource and associated with that resource. The evaluator confirms that-per
this description-the FEK is unique per resource (file or set of files) and that the FEK is
established using the mechanisms specified in FCS_CKM_EXT.2.1).

FCS_CKM_EXT.4.1

FCS_CKM_EXT.4.2

Guidance
The evaluator shall review the instructions in the AGD guidance to determine that any
explicit actions that need to be taken by the user to establish a FEK exist-taking into
account any differences that arise from different platforms-and are consistent with the
description in the TSS.

Tests
None.

FCS_CKM_EXT.4 Cryptographic Key Destruction

The TSF shall destroy cryptographic keys in accordance with a specified cryptographic key
destruction method [selection:

For volatile memory, the destruction shall be executed by a [selection:
single overwrite consisting of [selection: a pseudo-random pattern using the
TSF's RBG, zeroes, ones, new value of a key, [assignment: any value that does
not contain any CSP]] ,
removal of power to the memory,
destruction of reference to the key directly followed by a request for garbage
collection

] ,
For non-volatile memory, the destruction shall be executed by [selection:

destruction of all KEKs protecting the target key, where none of the KEKs
protecting the target key are derived ,
the invocation of an interface provided by the underlying platform that [selection:

logically addresses the storage location of the key and performs a
[selection: single, [assignment: ST author defined multi-pass]] overwrite
consisting of [selection: a pseudo-random pattern using the TSF's RBG,
zeroes, ones, new value of a key, [assignment: any value that does not
contain any CSP]] ,
instructs the underlying platform to destroy the abstraction that represents
the key

]
]

].

Application Note: The interface referenced in the requirement could take different forms, the
most likely of which is an application programming interface to an OS kernel. There may be
various levels of abstraction visible. For instance, in a given implementation that overwrites a
key stored in non-volatile memory, the application may have access to the file system details
and may be able to logically address specific memory locations. In another implementation
that instructs the underlying platform to destroy the representation of a key stored in non-
volatile memory, the application may simply have a handle to a resource and can only ask the
platform to delete the resource, as may be the case with a platforms secure key store. The
latter implementation should only be used for the most restricted access. The level of detail to
which the TOE has access will be reflected in the TSS section of the ST. Several selections
allow assignment of a 'value that does not contain any CSP'. This means that the TOE uses
some other specified data not drawn from a source that may contain key material or reveal
information about key material, and not being any of the particular values listed as other
selection options. The point of the phrase 'does not contain any CSP' is to ensure that the
overwritten data is carefully selected, and not taken from a general 'pool' that might contain
current or residual data that itself requires confidentiality protection.

For the selection "destruction of all KEKs protecting target key, where none of the KEKs
protecting the target key are derived", a key can be considered destroyed by destroying the
key that protects the key. If a key is wrapped or encrypted it is not necessary to "overwrite"
that key, overwriting the key that is used to wrap or encrypt the key used to encrypt/decrypt
data, using the appropriate method for the memory type involved, will suffice. For example, if
a product uses a Key Encryption Key (KEK) to encrypt a File Encryption Key (FEK),
destroying the KEK using one of the methods in FCS_CKM_EXT.4 is sufficient, since the
FEK would no longer be usable (of course, presumes the FEK is still encrypted and the KEK
cannot be recovered or re-derived).

The TSF shall destroy all keys and key material when no longer needed.

Application Note: Keys, including intermediate keys and key material that are no longer
needed are destroyed by using an approved method, FCS_CKM_EXT.4.1. Examples of keys
are intermediate keys, submasks. There may be instances where keys or key material that
are contained in persistent storage are no longer needed and require destruction. Base on
their implementation, vendors will explain when certain keys are no longer needed. There are
multiple situations in which key material is no longer necessary, for example, a wrapped key
may need to be destroyed when a password is changed. However, there are instances when
keys are allowed to remain in memory, for example, a device identification key. If a PIN was
used for a smart card and managed by the TOE, ensuring that the PIN was properly
destroyed must be addressed.

Evaluation Activity

TSS

The evaluator shall verify the TSS provides a high level description of what it means for
keys and key material to be no longer needed and when they should be expected to be
destroyed. The evaluator shall verify the TSS provides a high level description of what it
means for keys and key material to be no longer needed and when then should be
expected to be destroyed.

KMD

The evaluator examines the KMD to ensure it describes how the keys are managed in
volatile memory. This description includes details of how each identified key is
introduced into volatile memory (e.g. by derivation from user input, or by unwrapping a
wrapped key stored in non-volatile memory) and how they are overwritten.

The evaluator shall check to ensure the KMD lists each type of key that is stored in in
non-volatile memory, and identifies how the TOE interacts with the underlying platform
to manage keys (e.g., store, retrieve, destroy). The description includes details on the
method of how the TOE interacts with the platform, including an identification and
description of the interfaces it uses to manage keys (e.g., file system APIs, platform key
store APIs).

The evaluator examines the interface description for each different media type to ensure
that the interface supports the selection(s) and description in the KMD.

If the ST makes use of the open assignment and fills in the type of pattern that is used,
the evaluator examines the KMD to ensure it describes how that pattern is obtained and
used. The evaluator shall verify that the pattern does not contain any CSPs.

The evaluator shall check that the KMD identifies any configurations or circumstances
that may not strictly conform to the key destruction requirement.

If the selection "destruction of all KEKs protecting target key, where none of the KEKs
protecting the target key are derived" is included the evaluator shall examine the TOE's
keychain in the KMD and identify each instance when a key is destroyed by this method.
In each instance the evaluator shall verify all keys capable of decrypting the target key
are destroyed in accordance with a specified key destruction method in
FCS_CKM_EXT.4.1. The evaluator shall verify that all of the keys capable of decrypting
the target key are not able to be derived to reestablish the keychain after their
destruction.

The evaluator shall verify the KMD includes a description of the areas where keys and
key material reside and when the keys and key material are no longer needed.

The evaluator shall verify the KMD includes a key lifecycle, that includes a description
where key material reside, how the key material is used, how it is determined that keys
and key material are no longer needed, and how the material is destroyed once it is not
needed and that the documentation in the KMD follows FCS_CKM_EXT.4.1 for the
destruction.

Guidance
There are a variety of concerns that may prevent or delay key destruction in some
cases.

The evaluator shall check that the guidance documentation identifies configurations or
circumstances that may not strictly conform to the key destruction requirement, and that
this description is consistent with the relevant parts of the TSS and any other relevant
Required Supplementary Information.

The evaluator shall check that the guidance documentation provides guidance on
situations where key destruction may be delayed at the physical layer and how such
situations can be avoided or mitigated if possible.

Some examples of what is expected to be in the documentation are provided here.

When the TOE does not have full access to the physical memory, it is possible that the
storage may be implementing wear-leveling and garbage collection. This may create
additional copies of the key that are logically inaccessible but persist physically. In this
case, to mitigate this the drive should support the TRIM command and implements
garbage collection to destroy these persistent copies when not actively engaged in other
tasks.

Drive vendors implement garbage collection in a variety of different ways, as such there
is a variable amount of time until data is truly removed from these solutions. There is a
risk that data may persist for a longer amount of time if it is contained in a block with
other data not ready for erasure. To reduce this risk, the operating system and file
system of the OE should support TRIM, instructing the non-volatile memory to erase
copies via garbage collection upon their deletion. If a RAID array is being used, only set-
ups that support TRIM are utilized. If the drive is connected via PCI-Express, the
operating system supports TRIM over that channel.

The drive should be healthy and contains minimal corrupted data and should be end of
lifed before a significant amount of damage to drive health occurs, this minimizes the risk
that small amounts of potentially recoverable data may remain in damaged areas of the

FCS_IV_EXT.1.1

drive.

Tests
These tests are only for key destruction provided by the application, test 2 does not
apply to any keys using the selection "new value of a key":

Test 1: Applied to each key held in volatile memory and subject to destruction by
overwrite by the TOE (whether or not the value is subsequently encrypted for
storage in volatile or non-volatile memory). In the case where the only selection
made for the key destruction method was removal of power, then this test is
unnecessary.

The evaluator shall:

1. Record the value of the key in the TOE subject to clearing.
2. Cause the cause the TOE or the underlying platform to dump to perform a
normal cryptographic processing with the key from Step #1.
3. Cause the TOE to clear the key.
4. Cause the TOE to stop the execution but not exit.
5. Cause the TOE to dump the entire memory of the TOE into a binary file.
6. Search the content of the binary file created in Step #5 for instances of the
known key value from Step #1.
Steps #1-6 ensure that the complete key does not exist anywhere in volatile
memory. If a copy is found, then the test fails.

Test 2: [Conditional] If new value of a key is selected this test does not apply.
Applied to each key held in non-volatile memory and subject to destruction by the
TOE.
The evaluator shall use special tools (as needed), provided by the TOE developer
if necessary, to ensure the tests function as intended.
1. Identify the purpose of the key and what access should fail when it is deleted.
(e.g. the file encryption key being deleted would cause data decryption to fail.)
2. Cause the TOE to clear the key.
3. Have the TOE attempt the functionality that the cleared key would be necessary
for.
4. The test succeeds if Step #3 fails.

Tests 3 and 4 do not apply for the selection instructing the underlying platform to
destroy the representation of the key, as the TOE has no visibility into the inner
workings and completely relies on the underlying platform.

Test 3: Applied to each key held in non-volatile memory and subject to destruction
by overwrite by the TOE. The evaluator shall use a tool that provides a logical view
of the media (e.g., MBR file system):
1. Record the value of the key in the TOE subject to clearing.
2. Cause the TOE to perform a normal cryptographic processing with the key from
Step #1.
3. Cause the TOE to clear the key.
4. Search the logical view that the key was stored in for instances of the known key
value from Step #1. If a copy is found, then the test fails.

Test 4: Applied to each key held in non-volatile memory and subject to destruction
by overwrite by the TOE. The evaluator shall use a tool that provides a logical view
of the media:
1. Record the logical storage location of the key in the TOE subject to clearing.
2. Cause the TOE to perform a normal cryptographic processing with the key from
Step #1.
3. Cause the TOE to clear the key.
4. Read the logical storage location in Step #1 of non-volatile memory to ensure
the appropriate pattern is utilized.
The test succeeds if correct pattern is used to overwrite the key in the memory
location. If the pattern is not found the test fails.

FCS_IV_EXT.1 Initialization Vector Generation

The TSF shall [selection:
invoke platform-provided functionality to generate IVs,
generate IVs with the following properties [selection:

CBC: IVs shall be non-repeating and unpredictable,
CCM: Nonce shall be non-repeating and unpredictable,
XTS: No IV. Tweak values shall be non-negative integers, assigned consecutively,
and starting at an arbitrary non-negative integer,
GCM: IV shall be non-repeating. The number of invocations of GCM shall not
exceed 2^32 for a given secret key

]
].

Evaluation Activity

FCS_KYC_EXT.1.1

TSS
The evaluator shall ensure the TSS describes how nonces are created uniquely and
how IVs and tweaks are handled (based on the AES mode). The evaluator shall confirm
that the nonces are unique and the IVs and tweaks meet the stated requirements.

Guidance
None.

Tests
None.

FCS_KYC_EXT.1 Key Chaining and Key Storage

The TSF shall maintain a key chain of: [selection:
a conditioned password as the [FEK],
[KEKs] originating from [selection: one or more authorization factors(s), a file
encryption enterprise management server] to [selection: the FEK(s), a file
encryption enterprise management server] using the following method(s): [selection:

utilization of the platform key storage,
utilization of platform key storage that performs key wrap with a TSF provided key,
implementation of key wrapping as specified in FCS_COP.1(5),
implementation of key combining as specified in FCS_SMC_EXT.1,
implementation of key encryption as specified in FCS_COP.1(7),
implementation of key transport as specified in FCS_COP.1(6),
implementation of key derivation as specified in FCS_KDF_EXT.1

] while maintaining an effective strength of [selection:
[selection: 128 bits, 256 bits] for symmetric keys ,
[selection: 128 bits, 192 bits, 256 bits] for asymmetric keys

] commensurate with the strength of the FEK
] and [selection:

no supplemental key chains,
other supplemental key chains that protect a key or keys in the primary key chain using
the following method(s): [selection:

utilization of the platform key storage,
utilization of platform key storage that performs key wrap with a TSF provided key,
implementation of key wrapping as specified in FCS_COP.1(5),
implementation of key combining as specified in FCS_SMC_EXT.1,
implementation of key encryption as specified in FCS_COP.1(7),
implementation of key transport as specified in FCS_COP.1(6),
implementation of key derivation as specified in FCS_KDF_EXT.1

]
].

Application Note: Key Chaining is the method of using multiple layers of encryption keys to
ultimately secure the FEK. The number of intermediate keys will vary. This applies to all keys
that contribute to the ultimate wrapping or derivation of the FEK. For the first selection, the ST
author selects the method used for the keychain.

If the second option is chosen ("KEKs originating:") , then the ST author chooses all methods
for production and protection of KEKs in the keychain from the options in the second
selection. For this option, the ST author must also specify the strength of the keys in the
keychain. It should be noted that "maintaining overall strength: commensurate with the overall
strength of the FEK" is meant to cover the use case for this PP-Module of a powered-off
device being recovered by an adversary, who subsequently attempts to recover the FEK
through a compromise of the key chain.

The third selection in the requirement is used to select the types of keys used in the key
chain (both symmetric and asymmetric keys are allowed). The bit sizes selected in the fourth
and fifth selections are chosen by the ST author to be commensurate with the strength of the
FEK in the following manner: for symmetric FEKs of 128 bits, the ST author can select any of
the choices for both symmetric and asymmetric keys. For symmetric FEKs of 256 bits, the ST
author selects 256 bits if the symmetric key option is chosen and 192 bits or 256 bits if the
asymmetric key option is chosen.

If a supplemental keychain is used, then the ST author selects the second option in the sixth
selection and then chooses the method by which these keys are protected. Keys in the
supplemental key chain may be of any size, as they only provide additional protection to the
primary key chain. Compromise (according the PP-Module use case) of the secondary key
chain cannot circumvent the protection provided by the primary keychain.

If the selections where the TOE implements KEKs are chosen for the primary or
supplemental key chains then FCS_CKM_EXT.3 shall be included.

The selections for an enterprise management server permit the key chain may originate or
terminate from an enterprise management server.

The server may provide a key needed to start a chain or the server may receive a key that
ends a chain.

FCS_VAL_EXT.1.1

FCS_VAL_EXT.1.2

The key management internal to the server is not evaluated here. This permits the enterprise
management server to function in the middle of a larger key chain.

Evaluation Activity

TSS
The evaluator shall verify the TSS contains a high level description of all keychains and
authorization methods selected in FIA_AUT_EXT.1 that are used to protect the KEK or
FEK.

KMD

The evaluator shall examine the KMD to ensure it describes each key chain in detail,
and these descriptions correspond with the selections of the requirement. The
description of each key chain shall be reviewed to ensure the options for maintaining the
key chain are documented.

The evaluator shall verify the KMD to ensure that it describes how each key chain
process functions, such that it does not expose any material that might compromise any
key in the chain. A high-level description should include a diagram illustrating the
keychain(s) implemented and detail where all keys and keying material is stored or how
the keys or key material are derived. The evaluator shall examine the primary key chain
to ensure that at no point the chain could be broken without a cryptographic exhaust or
knowledge of the KEK or FEK and the effective strength of the FEK is maintained
throughout the Key Chain as specified in the requirement.

Guidance
None.

Tests
None.

FCS_VAL_EXT.1 Validation

The TSF shall perform validation of the [user] by [selection:
receiving assertion of the subject's validity from [assignment: Operational Environment
component responsible for authentication],
validating the [selection: submask, intermediate key] using the following methods:
[selection:

key wrap as specified in FCS_COP.1(5),
hash the [selection: submask, intermediate key, FEK] as specified in
FCS_COP.1(2) (from [AppPP]) and compare it to a stored hash,
decrypt a known value using the [selection: submask, intermediate key, FEK] as
specified in FCS_COP.1(1) (from [AppPP]) and compare it against a stored
known value

]
].

The TSF shall require validation of the [user] prior to [decrypting any FEK].

Application Note: Two iterations of this SFR are also defined in PP-Module for File
Encryption Enterprise Management. If the TOE also claims this module, the ST author should
iterate these SFRs by using "/FE" and "/EM" as unique identifiers for the iterations. This will
allow the reader to easily determine which iteration applies to each TOE component.

Evaluation Activity

TSS
Conditional:
If 'validating' is selected in FCS_VAL_EXT.1.1, the evaluator shall examine the TSS to
determine which authorization factors support validation.

The evaluator shall examine the TSS to ensure that it contains a high-level description of
how how the submasks are validated. If multiple submasks are used within the TOE, the
evaluator shall verify that the TSS describes how each is validated (e.g., each submask
validated before combining, once combined validation takes place).

Conditional:
If 'receiving assertion' is selected in FCS_VAL_EXT.1.1, the evaluator shall examine the
TSS to verify that it describes the enviroments that can be leveraged with the TOE and
how each claims to perform validation. The evaluator shall ensure that none of the
stated platform validation mechanisms weaken the key chain of the product.

Guidance
If the validation functionality is configurable, the evaluator shall examine the operational
guidance to ensure it describes how to configure the TOE to ensure the limits regarding
validation attempts can be established.

FDP_PRT_EXT.1.1

FDP_PRT_EXT.1.2

Tests
There are no test activities for this requirement.

5.2.2 User Data Protection (FDP)

FDP_PRT_EXT.1 Protection of Selected User Data

The TSF shall perform encryption and decryption of the user-selected file (or set of files) in
accordance with FCS_COP.1(1) (from [AppPP]).

Application Note: This is the primary requirement for encrypting and decrypting the
protected resources (files and sets of files).

Evaluation Activity

TSS
The evaluator shall examine the TSS to determine that it lists each type of resource that
can be encrypted (e.g., file, directory) and what "encrypted" means in terms of the
resource (e.g., "encrypting a directory" means that all of the files contained in the
directory are encrypted, but the data in the directory itself (which are filenames and
pointers to the files) are not encrypted).

The evaluator shall also confirm that the TSS describes how each type of resource listed
is encrypted and decrypted by the TOE. The evaluator shall ensure that this description
includes the case where an existing file or set of files is encrypted for the first time; a
new file or set of files is created and encrypted; an existing file or set of files is re-
encrypted (that is, it had been initially encrypted; it was decrypted (by the TOE) for use
by the user, and is then subsequently re-encrypted); and corresponding decryption
scenarios. If other scenarios exist due to product implementation/features, the evaluator
shall ensure that those scenarios are covered in the TSS as well.

Guidance
If the TOE creates temporary objects and these objects can be protected through
administrative measures (e.g., the TOE creates temporary files in a designated directory
that can be protected through configuration of its access control permissions), then the
evaluator shall check the Operational Guidance to ensure that these measures are
described.

If there are special measures necessary to configure the method by which the file or set
of files are encrypted (e.g., choice of algorithm used, key size, etc.), then those
instructions shall be included in the Operational Guidance and verified by the evaluator.
In these cases, the evaluator checks to ensure that all non-TOE products used to satisfy
the requirements of the ST that are described in the Operational Guidance are
consistent with those listed in the ST, and those tested by the evaluation activities of this
PP-Module.

Tests
The evaluator shall also perform the following tests. All instructions for configuring the
TOE and each of the environments must be included in the Operational Guidance and
used to establish the test configuration.

For each resource and decryption/encryption scenario listed in the TSS, the evaluator
shall ensure that the TSF is able to successfully encrypt and decrypt the resource using
the following methodology:
Monitor the temporary resources being created (if any) and deleted by the TSF-the tools
used to perform the monitoring (e.g., procmon for a Windows system) shall be identified
in the test report. The evaluator shall ensure that these resources are consistent with
those identified in the TSS, and that they are protected as specified in the Operational
Guidance and are deleted when the decryption/encryption operation is completed.

The TSF shall [selection: invoke platform-provided functionality, implement functionality] to
ensure that all sensitive data created by the TOE when decrypting/encrypting the user-
selected file (or set of files) are destroyed in volatile and non-volatile memory when the data
is no longer needed according to FCS_CKM_EXT.4.

Application Note: The intent is that the TSF controls the use and clearing of any data that it
manipulates that is not needed by the user (e.g. a temporary file created in non-volatile
memory during the encryption/decryption process would be destroyed as soon as the process
is completed). This should not prevent expected usage (e.g. the TOE may create a decrypted
copy of a file as requested by the user). The TSF is also not responsible for temporary files
that non-TSF application creates (for example, a text editor may create a "checkpoint" file
when editing a file that is protected by the TOE; the TOE does not have to try to keep track of
or clean up these "checkpoint" files). An optional requirement on cleaning up the temporary
files created by non-TSF application when operating on files protected by the TOE is
FDP_PRT_EXT.3.1. While these data sets are not keys, they can follow the same deletion
procedures described in FCS_CKM_EXT.4.

Evaluation Activity

TSS

FDP_PRT_EXT.2.1

The evaluator shall examine the TSS to ensure there is a high-level description of how
the FEK is protected.

The evaluator shall examine the TSS to ensure there is a description of how the FEK is
protected.

The evaluator shall examine the TSS to ensure that it describes all temporary
files/resources created or memory used during the decryption/encryption process and
when those files/resources or memory is no longer needed.

The TSS shall describe how the TSF or TOE platform deletes the non-volatile memory
(for example, files) and volatile memory locations after the TSF is done with its
decryption/encryption operation.

Guidance

There are no additional guidance evaluation activities for FDP_PRT_EXT.1.2.

Tests
Test 1: This test only applies for application provided functionality.

1. Using a file editor, create and save a text file that is encrypted per the evaluation
configured encryption policy. The contents of the file will be limited to a known text
pattern to ensure that the text pattern will be present in all encryption/decryption
operations performed by the TOE.

2. Exit the file editor so that the file (including its known text pattern) has
"completed the decryption/encryption operation" and process memory containing
the known text pattern is released.

3. The evaluator will take a dump of volatile memory and search the retrieved
dump for the known pattern. The test fails if the known plaintext pattern is found in
the memory dump.

4. The evaluator will search the underlying non-volatile storage for the known
pattern. The test fails if the known plaintext pattern is found in the search.

FDP_PRT_EXT.2 Destruction of Plaintext Data

The TSF shall [selection: invoke platform-provided functionality, implement functionality] to
ensure that all original plaintext data created when decrypting/encrypting the user-selected
file (or set of files) are destroyed in volatile and non-volatile memory according to
FCS_CKM_EXT.4 upon completion of the decryption/encryption operation.

Application Note: This is the primary requirement for encrypting and decrypting the
protected resources (file or set of files).

For FDP_PRT_EXT.2.1, the intent is that the TSF controls the use and clearing of any data
that it manipulates. It needs to ensure that no plaintext data from encrypted resources
remains after the TSF has finished operating on that resource. In the context of
FDP_PRT_EXT.2.1, the TSF has completed the decryption operation after it has decrypted
the file or set of files for use by an application, and completed the encryption operation after it
has encrypted the file or set of files for storage in the file system.

While these data sets are not keys, they can follow the same deletion procedures described
in FCS_CKM_EXT.4.

Evaluation Activity

TSS
The evaluator shall examine the TSS to ensure that it describes all temporary file (or set
of files) that are created in the filesystem of the host during the decryption/encryption
process, and that the TSS describes how these files are deleted after the TSF is done
with its decryption/encryption operation. Note that if other objects/resources are created
on the host that are 1) persistent and 2) visible to other processes (users) on that host
that are not filesystem objects, those objects shall be identified and described in the
TSS as well.

Guidance
None.

Tests
Test 1: If the TSS creates temporary files/resources during file
decryption/encryption, the evaluator shall perform the following tests to verify that
the temporary files/resources are destroyed. If the product supported shared files
per FIA_FCT_EXT.2, this test must be repeated with a shared file. The evaluator
shall use a tool (e.g., procmon for a Windows system) that is capable of monitoring
the creation and deletion of files during the decryption/encryption process is
performed. A tool that can search the contents of the hard drive (e.g., winhex) will

FIA_AUT_EXT.1.1

also be needed. The tools used to perform the monitoring shall be identified in the
test report.
(Creating an encrypted document)

Open an editing application.
Create a special string inside the document. The string could be 5-10 words.
It is recommended to remove the spaces. This will create a one page
document.
Start the file monitoring tool.
Save and close the file.
Encrypt the file using the TOE (if the TOE does not encrypt automatically for
the user).

Analysis Steps
If needed, exit/close the TOE.
Stop the file monitoring tool. View the results. Identify any temporary files that
were created during the encryption process. Examine to see if the temporary
files were destroyed when the TOE closed.
If temporary files remain, these temporary files should be examined to
ensure that no plaintext data remains. If plaintext data is found in these files,
the test fails.
Search the contents of the hard drive (using the second tool) for the plaintext
string used above. (The search should be performed using both ASCII and
Unicode formats.)
If the string is found, this means that plaintext from the test fails.

(Creating, encrypting a blank document and then adding text):
Encrypt a blank document using the tool.
Create a special string inside the document. The string could be 5-10 words.
It is recommended to remove the spaces. This will create a one page
document.
Start the file monitoring tool.
Save and close the file.
Perform the "Analysis Steps" listed above.

5.2.3 Identification and Authentication (FIA)

FIA_AUT_EXT.1 Subject Authorization

The TSF shall [selection: implement platform-provided functionality to provide user
authorization, provide user authorization] based on [selection:

a password authorization factor conditioned as defined in FCS_CKM_EXT.6,
an external smart card factor that is at least the same bit-length as the FEK(s), and is
protecting a submask that is [selection: generated by the TOE (using the RBG as
specified in FCS_RBG_EXT.1 (from [AppPP])), generated by the platform] protected
using RSA with key size [selection: 3072 bits, 4096 bits] with user presence proved by
presentation of the smart card and [selection: no PIN, an OE defined PIN, a
configurable PIN] ,
an external USB token factor that is at least the same security strength as the FEK(s),
and is providing a submask generated by the [selection: TOE (using the RBG as
specified in FCS_RBG_EXT.1 (from [AppPP])), platform]

].

Application Note: If the ST author selects "provide user authorization", the selection-based
requirement FCS_VAL_EXT.2 must also be claimed.

This requirement specifies what authorization factors the TOE accepts from the user. A
password entered by the user is one authorization factor that the TOE must be able to
condition, as specified in FCS_CKM_EXT.6. Another option is a smart card authorization
factor, with the differentiating feature being how the value is generated - either by the TOE's
RBG or by the platform. An external USB token may also be used, with the submask value
generated either by the TOE's RBG or by the platform.

The TOE may accept any number of authorization factors, and these are categorized as
"submasks". The ST author selects the authorization factors they support, and there may be
multiple methods for a selection.

Use of multiple authorization factors is preferable; if more than one authorization factor is
used, the submasks produced must be combined using FCS_SMC_EXT.1.

Evaluation Activity

The evaluation activities for this component will be driven by the selections made by the
ST author. This section describes evaluation activities for all possible selections in an
ST; it should be understood that if a capability is not selected in the ST, the noted
evaluation activity does not need to be performed.

TSS

FMT_SMF.1.1(2)

The evaluator shall examine the TSS to ensure that it describes how user authentication
is performed. The evaluator shall verify that the authorization methods listed in the TSS
are specified and included in the requirements in the ST.

Requirement met by the TOE
The evaluator shall first examine the TSS to ensure that the authorization factors
specified in the ST are described. For password-based factors the examination of the
TSS section is performed as part of FCS_CKM_EXT.6 Evaluation Activities. Additionally
in this case, the evaluator shall verify that the operational guidance discusses the
characteristics of external authorization factors (e.g., how the authorization factor must
be generated; format(s) or standards that the authorization factor must meet) that are
able to be used by the TOE. If other authorization factors are specified, then for each
factor, the TSS specifies how the factors are input into the TOE.

Requirement met by the platform
The evaluator shall examine the TSS to ensure a description is included for how the
TOE is invoking the platform functionality and how it is getting an authorization value that
has appropriate entropy.

Guidance
The evaluator shall verify that the AGD guidance includes instructions for all of the
authorization factors. The AGD will discuss the characteristics of external authorization
factors (e.g., how the authorization factor is generated; format(s) or standards that the
authorization factor must meet, configuration of the TPM device used) that are able to be
used by the TOE.

Tests
The evaluator shall ensure that authorization using each selected method is tested
during the course of the evaluation, setting up the method as described in the
operational guidance and ensuring that authorization is successful and that failure to
provide an authorization factor results in denial to access to plaintext data.

[conditional]: If there is more than one authorization factor, ensure that failure to supply a
required authorization factor does not result in access to the decrypted plaintext data.

5.2.4 Security Management (FMT)

FMT_SMF.1(2) Specification of File Encryption Management Functions

The TSF shall be capable of performing the following management functions: [selection:
configure cryptographic functionality,
change authentication factors,
perform a cryptographic erase of the data by the destruction of FEKs or KEKs
protecting the FEKs as described in FCS_CKM_EXT.4.1,
configure the number of failed validation attempts required to trigger corrective
behavior ,
configure the corrective behavior to issue in the event of an excessive number of
failed validation attempts,
[assignment: other management functions provided by the TSF]

].

Application Note: The intent of this requirement is to express the management capabilities
that may be included in the TOE. Several common options are given:

If the TOE provides configurability of the cryptographic functions (for example, key size
of the FEK)-even if the configuration is the form of parameters that may be passed to
cryptographic functionality implement on the TOE platform--then "configure
cryptographic functionality" will be included, and the specifics of the functionality offered
can either be written in this requirement as bullet points, or included in the TSS.
If the TOE uses stored FEKS or KEKs(the FEK is not directly derived from a password) ,
then "perform a cryptographic erase of the data by the destruction of FEKs or KEKs
protecting the FEKs as described in FCS_CKM_EXT.4.1" will be included. This function
should be able to be triggered by a user or admin and may be triggered by
uninstallation.
If "other management functions" are assigned, a validation authority must be consulted
to ensure the evaluation activities and other functionality requirements that may be
needed are appropriately specified so that the ST can claim conformance to this PP-
Module.

This list is in addition to the list of functions as specified in, FMT_SMF.1 in the AppPP.

Evaluation Activity

The evaluation activities for this component will be driven by the selections made by the
ST author. This section describes evaluation activities for all possible selections in an
ST; it should be understood that if a capability is not selected in the ST, the noted
evaluation activity does not need to be performed. The following sections are divided up
into "Required Activities" and "Conditional Activities" for ease of reference.

If password or passphrase authorization factors are implemented by the TOE, then the
appropriate "change" selection must be included.

FPT_KYP_EXT.1.1

If the TOE provides configurability of the cryptographic functions (for example, key size
of the FEK)- even if the configuration is the form of parameters that may be passed to
cryptographic functionality implemented on the TOE platform--then "configure
cryptographic functionality" will be included, and the specifics of the functionality offered
can either be written in this requirement as bullet points, or included in the TSS.

If "other management functions" are assigned, a validation authority must be consulted
to ensure the evaluation activities and other functionality requirements that may be
needed are appropriately specified so that the ST can claim conformance to this PP-
Module.

TSS
Conditional Activities: The evaluator shall examine the TSS to ensure that it describes
the sequence of activities that take place from an implementation perspective when this
activity is performed (for example, how it determines which resources are associated
with the KEK, the decryption and re-encryption process), and ensure that the KEK and
FEK are not exposed during this change.

Cryptographic Configuration: None for this requirement.

Guidance
Conditional Activities: The evaluator shall examine the Operational Guidance to ensure
that it describes how the password/passphrase-based authorization factor is to be
changed.

Cryptographic Configuration: The evaluator shall determine from the TSS for other
requirements (FCS_*, FDP_PRT_EXT, FIA_AUT_EXT) what portions of the
cryptographic functionality are configurable. The evaluator shall then review the AGD
documentation to determine that there are instructions for manipulating all of the claimed
mechanisms.

Tests
Cryptographic Erase: If the TOE uses stored FEKS or KEKs, the evaluator shall examine
the key chain to determine that the keys destroyed by a cryptographic erase will result in
the data becoming unrecoverable. Testing for this activity is performed for other
components in this PP-Module.

5.2.5 Protection of the TSF (FPT)

FPT_KYP_EXT.1 Protection of Keys and Key Material

The TSF shall [selection:
not store keys in non-volatile memory,
store keys in non-volatile memory only when [selection:

wrapped, as specified in FCS_COP.1(5),
encrypted, as specified in FCS_COP.1(7),
the plaintext key is stored in the underlying platform's keystore as specified by
FCS_STO_EXT.1.1 (from [AppPP]),
the plaintext key is not part of the key chain as specified in FCS_KYC_EXT.1.,
the plaintext key will no longer provide access to the encrypted data after initial
provisioning,
the plaintext key is a key split that is combined as specified in FCS_SMC_EXT.1
and another contribution to the split is [selection:

wrapped as specified in FCS_COP.1(5),
encrypted as specified in FCS_COP.1(7),
derived as specified in FCS_KDF_EXT.1.1 and not stored in non-volatile
memory,
supplied by the enterprise management server

] ,
the plaintext key is stored on an external storage device for use as an
authorization factor.,
the plaintext key is used to encrypt a key as specified in FCS_COP.1(7) or wrap a
key as specified in FCS_COP.1(5) that is already encrypted as specified in
FCS_COP.1(7) or wrapped as specified in FCS_COP.1(5)

]
].

Application Note: The plaintext key storage in non-volatile memory is allowed for several
reasons. If the keys exist within protected memory that is not user accessible on the TOE or
OE, the only methods that allow it to play a security relevant role for protecting the FEK is if it
is a key split or providing additional layers of wrapping or encryption on keys that have
already been protected.

Evaluation Activity

TSS
The evaluator shall verify the TSS for a high level description of the method(s) used to
protect keys stored in non-volatile memory.

KMD

The evaluator shall verify the KMD to ensure it describes the storage location of all keys
and the protection of all keys stored in non-volatile memory. The description of the key
chain shall be reviewed to ensure FCS_COP.1(5) is followed for the storage of wrapped
or encrypted keys in non-volatile memory and plaintext keys in non-volatile memory
meet one of the criteria for storage.

Guidance
None.

Tests
None.

6 Consistency Rationale

6.1 Application Software Protection Profile

6.1.1 Consistency of TOE Type

6.1.2 Consistency of Security Problem Definition
The threats defined by this PP-Module (see section 3.1) supplement those defined in the App PP as follows:

PP-Module Threat Consistency Rationale

T.UNAUTHORIZED_DATA_ACCESS This threat is a variation on T.PHYSICAL_ACCESS defined in the Base-PP.
In this case, the "sensitive data at rest" is the data that the TOE is intended to
protect.

T.MANAGEMENT_ACCESS This threat is a variation on T.LOCAL_ATTACK defined in the Base-PP. The
Base-PP does not define access-controlled management functions so this
PP-Module goes beyond it by specifying misuse of the management
interface, or inability to fully use the management interface, as threats to the
TSF.

T.KEYING_MATERIAL_COMPROMISE This threat is a specific example of T.PHYSICAL_ACCESS defined in the
Base-PP. Specifically, this PP-Module defines a method of maliciously
gaining access to sensitive data at rest that is particular to the technology
type of this PP-Module.

T.UNSAFE_AUTHFACTOR_VERIFICATION This threat is a specific example of T.PHYSICAL_ACCESS defined in the
Base-PP. Specifically, this PP-Module defines a method of maliciously
gaining access to sensitive data at rest that is particular to the technology
type of this PP-Module.

T.KEYSPACE_EXHAUST This threat is a specific example of T.PHYSICAL_ACCESS defined in the
Base-PP. Specifically, this PP-Module defines a method of maliciously
gaining access to sensitive data at rest that is particular to the technology
type of this PP-Module.

T.PLAINTEXT_COMPROMISE This threat is a specific example of T.PHYSICAL_ACCESS defined in the
Base-PP. Specifically, this PP-Module defines a method of maliciously
gaining access to sensitive data at rest that is particular to the technology
type of this PP-Module.

6.1.3 Consistency of Objectives
The objectives for the TOEs are consistent with the App PP based on the following rationale:

PP-Module TOE Objective Consistency Rationale

O.KEY_MATERIAL_PROTECTION This objective is consistent with the Base-PP because the Base-PP includes the
O.PROTECTED_STORAGE objective. The protection and timely destruction of
key materials is consistent with the intent of that objective.

O.FEK_SECURITY This objective is consistent with the Base-PP because it is a method of
supporting the Base-PP's O.PROTECTED_STORAGE objective that is specific
to this technology type.

O.WIPE_MEMORY This objective is consistent with the Base-PP because it is a method of
supporting the Base-PP's O.PROTECTED_STORAGE objective that is specific
to this technology type.

O.PROTECT_DATA This objective is consistent with the Base-PP because it is a method of
supporting the Base-PP's O.PROTECTED_STORAGE objective that is specific
to this technology type.

O.SAFE_AUTHFACTOR_VERIFICATION This objective is consistent with the Base-PP because it is a method of
supporting the Base-PP's O.PROTECTED_STORAGE objective that is specific
to this technology type.

O.MANAGE The Base-PP does not define functionality for protected administrative access to
the TSF so this objective relates solely to material beyond the scope of the
Base-PP.

The objectives for the TOE's Operational Environment are consistent with the App PP based on the following rationale:

PP-Module Operational Environment
Objective Consistency Rationale

OE.AUTHORIZATION_FACTOR_STRENGTH This objective is consistent with the Base-PP because this functionality is
beyond the scope of what the Base-PP defines. Therefore, the use and
strength of external authorization factors does not affect the ability of any
Base-PP SFRs or objectives to be satisfied.

OE.POWER_SAVE This objective is consistent with the Base-PP because it is an extension of
the Base-PP's OE.PLATFORM objective that is specific to this technology
type.

OE.STRONG_ENVIRONMENT_CRYPTO This objective is consistent with the Base-PP because the Base-PP allows
for the TOE to use platform-provided cryptography.

6.1.4 Consistency of Requirements
This PP-Module identifies several SFRs from the App PP that are needed to support File Encryption functionality. This is
considered to be consistent because the functionality provided by the App is being used for its intended purpose. The PP-
Module also identifies a number of modified SFRs from the App PP as well as new SFRs that are used entirely to provide
functionality for File Encryption. The rationale for why this does not conflict with the claims defined by the App PP are as
follows:

PP-Module
Requirement Consistency Rationale

Modified SFRs

This PP-Module does not modify any requirements when the App PP is the base.

Mandatory SFRs

FCS_CKM_EXT.2 This SFR describes behavior that is not in scope of the Base-PP. It is consistent with the Base-PP
because it may use the same random bit generation function defined in the Base-PP.

FCS_CKM_EXT.4 This SFR extends the cryptographic functionality defined in the Base-PP by specifying a method for key
destruction. It is consistent with the Base-PP because keys generated by the Base-PP portion of the
TOE may also be destroyed in the manner specified by this SFR.

FCS_IV_EXT.1 This SFR defines how IVs for AES keys must be generated. This is consistent with the Base-PP
because it supplements the key generation methods specified by the Base-PP SFR FCS_CKM.1(2).

FCS_KYC_EXT.1 The Base-PP defines how stored keys are protected. This SFR extends that functionality by defining the
logical hierarchy of how keys are logically protected by other keys or other secret data.

FCS_VAL_EXT.1 This SFR goes beyond the functionality defined by the Base-PP by defining a method by which the TSF
can validate the correctness of data input to it.

FDP_PRT_EXT.1 This SFR is consistent with the Base-PP because it is a specific application of the FCS_COP.1(1)
function defined in the Base-PP.

FDP_PRT_EXT.2 This SFR relates to the destruction of key data, which is beyond the scope defined by the Base-PP and
does not affect the ability of the Base-PP SFRs to be enforced.

FIA_AUT_EXT.1 This SFR defines how user requests to access protected data are authorized. It uses FCS_RBG_EXT.1
from the Base-PP in a manner consistent with its definition, but otherwise does not relate to functionality
defined by the Base-PP.

FMT_SMF.1(2) This SFR defines management functions for the TOE for functionality specific to this PP-Module. These
functions are defined in addition to what the Base-PP defines for its own operation.

FPT_KYP_EXT.1 The Base-PP defines an SFR for secure storage of sensitive data. This SFR expands on that definition
by describing the supported logical methods for storage of key data.

Optional SFRs

FCS_CKM_EXT.5 This SFR supports the PP-Module's data authentication function, which does not relate to any
functionality defined in the Base-PP.

FCS_COP_EXT.1 This SFR defines usage of AES functionality not defined by the Base-PP. However, this functionality is
only used in certain situations that are specific to this PP-Module and do not affect the ability for any
Base-PP SFRs to be enforced.

FDP_AUT_EXT.1 This SFR relates to data authentication, which does not relate to any functionality defined in the Base-
PP.

FDP_AUT_EXT.2 This SFR relies on cryptographic functionality defined by the Base-PP. However, the function itself does
not relate to any behavior defined in the Base-PP.

FDP_AUT_EXT.3 This SFR relies on cryptographic functionality defined by the Base-PP. However, the function itself does
not relate to any behavior defined in the Base-PP.

FDP_PM_EXT.1 This SFR describes the behavior of the TSF when its host platform is in a locked or unpowered state,
which does not relate to any functionality defined in the Base-PP.

FDP_PRT_EXT.3 This SFR relates to the PP-Module's file encryption capability. This goes beyond the sensitive data
protection defined in the Base-PP but does not prevent the Base-PP functions from being enforced.

FIA_FCT_EXT.1 This SFR relates to the use of authorization factors, which does not relate to any behavior described in
the Base-PP.

FIA_FCT_EXT.2 This SFR relates to key sharing, which does not relate to any behavior described in the Base-PP.

Selection-based SFRs

FCS_CKM_EXT.3 This SFR relates to how KEKs are made available to the TSF, which are used for functionality that does
not relate to the Base-PP.

FCS_CKM_EXT.6 This SFR defines a key derivation method based on passphrase conditioning. It uses the
FCS_RBG_EXT.1 SFR from the Base-PP in its intended manner but otherwise does not relate to the
Base-PP's functionality.

FCS_COP.1(5) This SFR defines usage of AES functionality not defined by the Base-PP. However, this functionality is
only used in certain situations that are specific to this PP-Module and do not affect the ability of any
Base-PP SFRs to be enforced.

FCS_COP.1(6) This SFR defines key transport functionality that is outside the scope of the original cryptographic
operations defined in the Base-PP.

FCS_COP.1(7) This SFR defines key encryption functionality that is outside the scope of the original cryptographic
operations defined in the Base-PP.

FCS_KDF_EXT.1 This SFR defines key transport functionality. It uses random bit generation and keyed-hash message
authentication functionality from the Base-PP as they are intended but is otherwise outside the scope of
the original cryptographic operations defined in the Base-PP.

FCS_SMC_EXT.1 This SFR relates to submask combining as a method of generating intermediate keys. Key hierarchy
functionality is outside the scope of the Base-PP.

FCS_VAL_EXT.2 This SFR goes beyond the functionality defined by the Base-PP by defining a method by which the TSF
can take security-relevant action if some data input to it is invalid.

Objective SFRs

This PP-Module does not define any objective requirements.

FCS_CKM_EXT.5.1

FCS_CKM_EXT.5.2

FCS_CKM_EXT.5.3

FCS_CKM_EXT.5.4

FCS_CKM_EXT.5.5

Appendix A - Optional SFRs

FCS_CKM_EXT.5 File Authentication Key (FAK) Support

The TSF shall use a FAK to authenticate sensitive data when a cryptographic, keyed hashing
function is used for data authentication and shall be supported in the following manner:
[selection:

A FAK conditioned from a password/passphrase shall never be stored in non-volatile
memory,
a FAK will be stored in non-volatile memory encrypted with a KEK as specified in
FCS_COP.1(5) using authorization factors as specified in FIA_AUT_EXT.1

].

The TSF shall create a unique FAK for each file (or set of files) using the mechanism on the
client as specified in FCS_RBG_EXT.1 (from [AppPP]).

The FAKs must be generated by the TOE as specified in FDP_AUT_EXT.2.9.

The TSF will not write FAKs to non-volatile memory.

The FAK shall be protected in a manner conformant to FCS_COP_EXT.1.

Application Note: The intent of this requirement is to describe the different methods that a
FAK can be created and formed.

FCS_CKM_EXT.5.1 details how a FAK is stored.

FCS_CKM_EXT.5.2 requires that each resource to be encrypted has a unique FAK, and that
this FAK is generated by the TSF. If the encrypted resource is a set of files encrypted under
one FAK, additional requirements on the initialization vectors and cipher modes must be
adhered to in Section 4.2.

Evaluation Activity

TSS
FCS_CKM_EXT.5.1: The evaluator shall examine the TSS to determine how the FAK is
stored (or not stored) in memory.

FCS_CKM_EXT.5.2: The evaluator shall examine the TSS to determine that it describes
how a FAK is created for a protected resource and associated with that resource;
protection of the FAK itself is covered by FCS_COP_EXT.1. The evaluator confirms that-
per this description-the FAK is unique per resource (file or set of files) and that the FAK
is created using a DRBG.

FCS_CKM_EXT.5.3: The TSS must detail that the FAKs are generated on the client
machine and are not generated on an external server.

FCS_CKM_EXT.5.4: FCS_CKM_EXT.4 contains the requirements necessary to ensure
that plaintext keys and key material do not remain in plaintext form in the TSF's non-
volatile memory space. In TOEs where the FAK is protected with a KEK, the FAK will
need to be encrypted and stored in non-volatile memory when not being used to
decrypt/encrypt a file. (Typically, the encrypted FAK is stored in the meta-data of the
encrypted file(s).) The evaluator shall examine the TSS to ensure that it describes how
the FAK is encrypted, both after its initial creation and after it has been decrypted for use
(note that in the entirely likely possibility that the FAK is not re-encrypted, then this case
must be indicated in the TSS and the description for FCS_CKM_EXT.4 will cover
disposal of the plaintext FEK and FAK). The evaluator shall further check to ensure that
the TSS describes how the FAK and any other associated meta-data necessary to
decrypt the file or set of files are associated with the resource. This description can be
combined with the description required for FCS_COP_EXT.1.

Guidance
None.

Tests
An example ciphertext file generated via the TOE shall be provided to the evaluator with
the accompanying FAK and prerequisite authorization information used for encryption.
The evaluator will use the TOE in conjunction with a debugging or forensics utility to
attempt an authentication of the ciphertext file using the provided authorization
information. The evaluator will then terminate processing of the TOE and perform a
search through non-volatile memory using the provided FAK string. The evaluator must
document each command, program or action taken during this process, and must
confirm that the FAK was never written to non-volatile memory. This test must be
performed three times to ensure repeatability. If during the course of this testing the
evaluator finds that the FAK was written to non-volatile memory, they should be able to
identify the cause (i.e. the TOE wrote the FAK to disk, the TOE platform dumped volatile
memory as a page file, etc.), and document the reason for failure to comply with the
requirement.

FCS_COP_EXT.1.1

FDP_AUT_EXT.1.1

FDP_AUT_EXT.1.2

FCS_COP_EXT.1 FAK Encryption/Decryption Support

The FAK shall be protected in the same manner as the FEK, in accordance with
FCS_COP.1(5).

Application Note: The intent of this requirement is to clarify that, if a FAK is to be used, it
should be treated as sensitive as the FEK, and thus, follow the same encryption and
decryption practices.

Evaluation Activity

TSS
The evaluator shall follow the evaluation activities as laid out in FCS_COP.1(5) to assert
proper FAK protection.

Guidance
None.

Tests
None.

FDP_AUT_EXT.1 Authentication of Selected User Data

The TSF shall perform authentication of the user-selected file (or set of files) and provide
notification to the user if modification had been detected.

The TSF shall implement a data authentication method based on [selection: cryptographic
keyed hashing service and verification in accordance with FDP_AUT_EXT.2, asymmetric
signing and verification in accordance with FDP_AUT_EXT.3].

Application Note: This is the primary requirement for authentication of the protected
resources (files and sets of files). It is highly encouraged for vendors to utilize a keyed
hashing service or asymmetric signing mechanism to ensure data authentication, as these
are the only two implementations noted in this PP-Module that prevent decryption if
authentication is unsuccessful. Using modes such as XTS or CBC will require additional data
authentication measures to be added, such as a keyed hash function or asymmetric signing,
because these modes do not come inherently packaged with data authentication or a way to
signal to the user that data has been modified.
Specific tests are performed in FDP_AUT_EXT.2 or FDP_AUT_EXT.3 depending on the
selection made in FDP_AUT_EXT.1.2.

Evaluation Activity

TSS
The evaluator shall examine the TSS to determine that it lists each type of resource that
can be authenticated (e.g., file, directory) and what "authenticated" means in terms of
the resource (e.g., "authenticating a directory" means that all of the files contained in the
directory are authenticated, but the data in the directory itself (which are filenames and
pointers to the files) are not authenticated).

The evaluator shall also confirm that the TSS describes how each type of resource
listed is authenticated by the TOE and how authentication measures are added to each
resource (e.g. taking all the encrypted files through a MAC function and appending the
MAC to the set of files). The evaluator shall ensure that this description includes the
case where an existing file or set of files has authentication measures added for the first
time; a new file or set of files is created and adds authentication measure; an existing file
or set of files updates or replaces its existing authentication measures (that is, it had a
MAC appended to the data; it was authenticated and decrypted (by the TOE) for use by
the user, and is then subsequently re-encrypted with an updated MAC); and
corresponding decryption scenarios. If other scenarios exist due to product
implementation/features, the evaluator shall ensure that those scenarios are covered in
the TSS as well.

Guidance
If the TOE creates temporary objects and these objects can be protected through
administrative measures (e.g., the TOE creates temporary files in a designated directory
that can be protected through configuration of its access control permissions), then the
evaluator shall check the Operational Guidance to ensure that these measures are
described.

If there are special measures necessary to configure the method by which the file or set
of files are authenticated (e.g., choice of function used, additional keys, etc.), then those
instructions shall be included in the Operational Guidance and verified by the evaluator.
This includes, for instance, lists of allowed platforms, libraries, and devices, and
instructions for using them. In these cases, the evaluator checks to ensure that all non-
TOE products used to satisfy the requirements of the ST that are described in the
Operational Guidance are consistent with those listed in the ST, and those tested by the
evaluation activities of this PP-Module.

Tests
The evaluator shall also perform the following tests. These tests must be performed for
each data authentication feature and platform claimed in the ST; all instructions for

FDP_AUT_EXT.2.1

FDP_AUT_EXT.2.2

FDP_AUT_EXT.2.3

FDP_AUT_EXT.2.4

FDP_AUT_EXT.2.5

FDP_AUT_EXT.2.6

FDP_AUT_EXT.2.7

FDP_AUT_EXT.2.8

FDP_AUT_EXT.2.9

FDP_AUT_EXT.3.1

FDP_AUT_EXT.3.2

FDP_AUT_EXT.3.3

configuring the TOE and each of the environments must be included in the Operational
Guidance and used to establish the test configuration.

For each resource and data authentication scenario listed in the TSS, the evaluator shall
ensure that the TSF is able to successfully add authentication measures and
authenticate the resource using the following methodology.

Monitor the temporary resources being created (if any) and deleted by the TSF-the tools
used to perform the monitoring (e.g., procmon for a Windows system) shall be identified
in the test report. The evaluator shall ensure that these resources are consistent with
those identified in the TSS, and that they are protected as specified in the Operational
Guidance and are deleted when the decryption/encryption and authentication operations
are completed.

FDP_AUT_EXT.2 Data Authentication Using cryptographic Keyed-Hash Functions

The TSF shall use a cryptographic, keyed hash function in accordance with FCS_COP.1(4)
(from [AppPP]).

The TSF shall use a File Authentication Key (FAK) in accordance with FCS_COP_EXT.1 and
FCS_CKM_EXT.5 as the secret key to the keyed hash function.

The TSF shall use the entirety of the ciphertext file as the message input to the keyed hash
function.

The TSF shall concatenate the output of the keyed hash function, the Message
Authentication Code (MAC).

The TSF shall authenticate the encrypted file prior to decryption.

The TSF shall authenticate the data by comparing the keyed hash output of the ciphertext
against the stored MAC.

The TSF shall notify the user of an unsuccessful authentication and prevent decryption of the
ciphertext.

During verification, the TSF shall verify the MAC is at the end of the ciphertext file.

The FAK will be generated using a RBG that meets FCS_RBG_EXT.1 (from [AppPP]).

Application Note: The intent of this requirement is to specify the correct way of using a
keyed hash function to authenticate the data, and enable authentication of data. FAKs are
considered cryptographic keys and are subject to destruction per FCS_CKM_EXT.4.1.

Evaluation Activity

TSS
The evaluator shall check the TSS section to confirm that it describes how a request for
each type of supported resource (file (or set of files)) will result in data authentication
using a keyed hash function. The evaluator will confirm that the TOE will respond
appropriately to a failed authentication, to include notifying the user of an invalid
authentication and preventing decryption. The evaluator will confirm that any file
encryption utility will be able to identify where the MAC is placed.

The evaluator will confirm that a FAK is used as part of the authentication process and
will identify the keyed hash function utilized.

Guidance
It is encouraged for every implementation to use a FAK that is wholly different and
independently generated from the FEK.

Tests
The evaluator shall perform the following test:

Test 1: Create an encrypted file and confirm that authentication of this file using
the correct FAK will result in a successful decryption.
Test 2: Modify an arbitrary number of bits of ciphertext and attempt to run the
authentication and decryption operations on the file. Assert that the TOE
successfully identified the forged ciphertext file and notified the user.

FDP_AUT_EXT.3 Data Authentication Using Asymmetric Signing and Verification

The TSF shall use a secure hash function in accordance with FCS_COP.1(2) (from [AppPP])
with the entire ciphertext file as input to create a hash.

The TSF shall use a cryptographic signing function in accordance with FCS_COP.1(3) (from
[AppPP]) and must use the hash generated in accordance with FDP_AUT_EXT.3.1 as input
to the signing process. Additionally, use of ephemeral key for signing purposes is prohibited.

The TSF shall use a public and private key pair generated in accordance with FCS_CKM.1(1)
(from [AppPP]) and must use this key pair as part of the cryptographic signing process in
accordance with FDP_AUT_EXT.3.2.

FDP_AUT_EXT.3.4

FDP_AUT_EXT.3.5

FDP_AUT_EXT.3.6

FDP_AUT_EXT.3.7

FDP_PM_EXT.1.1

FDP_PM_EXT.1.2

FDP_PM_EXT.1.3

The TSF shall authenticate the ciphertext data prior to decryption.

The TSF shall notify the user of an unsuccessful authentication and prevent decryption of the
ciphertext if such an event were to occur.

The TSF shall append the signature to the end of the ciphertext file.

During verification, the TSF shall verify the signature is at the end of the ciphertext file.

Application Note: The intent of this requirement is to specify the secure way of using a
cryptographic signing and hashing function as part of the data authentication mechanism.

Evaluation Activity

TSS
The evaluator shall check the TSS section to confirm that it describes how a request for
each type of supported resource (file (or set of files)) will result in data authentication
using a secure hash and cryptographic signing process. The evaluator will confirm that
the supplied public and private key pair were generated in accordance with
FCS_CKM.1(1). The evaluator will confirm that the entire ciphertext file was used to
create the hash and that the hash was used as input to the cryptographic signing
function. The evaluator will confirm that the TSF notifies the user of an unsuccessful
authentication and prevents decryption. The evaluator shall confirm that the signature is
appended to the end of the ciphertext file.

Guidance
None.

Tests
The evaluator shall perform the following test:

Test 1: Create an encrypted file and demonstrate that authentication of this file
using the correct keying material will be successful.
Test 2: Modify an arbitrary number of bits of ciphertext and attempt to run the
authentication and decryption operations on the file. Assert that the TOE
successfully identified the forged ciphertext file and notified the user.

FDP_PM_EXT.1 Protection of Data in Power Managed States

The TSF shall protect all data selected for encryption during the transition to the
[assignment: powered-down state(s) or locked system states for which this capability is
provided] state as per FDP_PRT_EXT.1.1.

On the return to a powered-on state from the state(s) indicated in FDP_PM_EXT.1.1, the TSF
shall authorize the user in the manner specified in FIA_AUT_EXT.1.1 once before any
protected data are decrypted.

The TSF shall destroy all key material and authentication factors stored in plaintext when
transitioning to a protected state as defined by FDP_PM_EXT.1.1.

Application Note: For the first assignment, the ST author fills in the state(s) using the same
name used in the Operational Guidance for the state that is appropriately protected by the
TOE.
It should be noted that it is not sufficient to use Operational Environment-based credentials to
unlock the TOE from the indicated state; the intent is that returning from the indicated state is
equivalent (from an authorization point of view) to returning from a completely powered-off
state and re-opening the resources that are protected.

Evaluation Activity

TSS
The evaluator shall examine the TSS to ensure that it describes the state(s) that are
supported by this capability. For each state, the evaluator ensures that the TSS contains
a description of how the state is entered, and the actions of the TSF on entering the
state, specifically addressing how multiple open resources (of each type) are protected,
and how keying material associated with these resources is protected (if different from
that described elsewhere). The TSF shall also describe how the state is exited, and how
the requirements are met during this transition to an operational state.

The evaluator shall verify the TSS provides a description of what keys and key material
are destroyed when entering any protected state.

KMD

The evaluator shall verify the KMD includes a description of the areas where keys and
key material reside. The evaluator shall verify the KMD includes a key lifecycle that
includes a description where key material reside, how the key material is used, and how
the material is destroyed once a claimed power state is entered and that the
documentation in the KMD follows FCS_CKM_EXT.4.1 for the destruction.

FDP_PRT_EXT.3.1

FIA_FCT_EXT.1.1

FIA_FCT_EXT.1.2

Guidance
The evaluator shall check the Operational Guidance to determine that it describes the
states that are supported by the TOE, and provides information related to the correct
configuration of these modes and the TOE.

The evaluator shall validate that guidance documentation contains clear warnings and
information on conditions in which the TOE may end up in a non-protected state. In that
case it must contain mitigation instructions on what to do in such scenarios.

Tests
The following tests must be performed by the evaluator for each supported State, type of
resource, platform, and authorization factor:

Test 1: Following the Operational guidance, configure the Operational
Environment and the TOE so that the lower power state of the platform is enabled
and protected by the TOE. Open several resources (documented in the test report)
that are protected. Invoke the lower power state. On resumption of normal power
attempt to access a previously-opened protected resource, observe that an
incorrect entry of the authorization factor(s) does not result in access to the
system, and that correct entry of the authorization factor(s) does result in access to
the resources.

FDP_PRT_EXT.3 Protection of Third-Party Data

The TSF shall ensure that all temporary files created by [selection: all applications,
[assignment: subset of applications that can integrate with the FE]]when
decrypting/encrypting the user-selected file (or set of files) are removed or encrypted upon
completion of the decryption/encryption operation.

Application Note: This requirement is to cover the detection and encryption of temporary
files created by third party applications. If the FE provides a capability to allow specific
applications to leverage it, the applications or method they would use to opt in may be
included in the assignment.

Evaluation Activity

TSS
The evaluator shall examine the TSS to ensure that it describes how the TOE detects
and encrypts temporary files (or set of files) that are created in the filesystem of the host
by third party products.

Guidance
[conditional] If any configuration is required for this process the evaluator shall verify it is
described in the guidance documentation.

Tests
The evaluator shall utilize any third party application that would be protected under this
protection to generate files, then verify those files are being encrypted.

FIA_FCT_EXT.1 Multi-User Authorization

The TSF shall support the use of authorization factors from multiple users that result in
unique KEKs.

The TSF shall support the ability of each user to have files protected by a key chain tied only
to that user's credentials.

Application Note: FIA_FCT_EXT.1.1 requires the TSF to support multiple authorization
factors to produce multiple KEKs, the intent is that the TSF supports a system where multiple
users have access to files on the underlying platform, and that each user has an authorization
factor so that they can protect their own files from other users. This should be accomplished
via the methods detailed in FIA_FCT_EXT.1.2.

Evaluation Activity

TSS
The evaluator shall examine the TSS to determine that it identifies each of the resource
protected in encrypted form and the key chain that protects that resource.

The evaluator shall examine the TSS to verify key chains are separate ensuring
resources are protected from other users, with the exception of files permitted to be
shared under the mechanism described in FIA_FCT_EXT.2.

Guidance
- The evaluator shall examine the operation guidance to determine that it contains
instructions on how to establish multiple accounts and protect resources from other
users. If different for different underlying platforms, the evaluator determines that all
platforms listed in the ST are addressed.

Tests
The evaluator shall ensure that different users using different authorization factors are

FIA_FCT_EXT.2.1

unable to decrypt each others protected resources for each type of protected resource
identified in the TSS. The test succeeds if the users are unable to decrypt resources not
chained to them, with the exception of any resources linked in FIA_FCT_EXT.2.

FIA_FCT_EXT.2 Authorized Key Sharing

The TSF shall support [selection: Authorized User Key sharing via key transport as specified
in FCS_COP.1(6), Distribution of a shared key from an enterprise management Server].

Application Note: While FIA_FCT_EXT.1 requires that each user has an authorization factor
so that they can protect their own files from other users. FIA_FCT_EXT.2 created a
mechanism to safely share files between users.

Evaluation Activity

TSS
The evaluator shall examine the TSS to determine that it identifies each of the resources
that is sharable in encrypted form (for instance, encrypted files may be sharable among
users, but encrypted directories may not), and the method by which the resource can be
shared among users with different authorization factors.

The evaluator shall examine the operation guidance to determine that it contains
instructions on how to set up and share resources with other users, if additional actions
are necessary due to use of the encryption product. If different for different underlying
platforms, the evaluator determines that all platforms listed in the ST are addressed.

Guidance
- The evaluator shall examine the operation guidance to determine that it contains
instructions on how to set up and share resources with other users, if additional actions
are necessary due to use of the encryption product. If different for different underlying
platforms, the evaluator determines that all platforms listed in the ST are addressed.

Tests
Test 1: For each type of resource that is identified in the TSS as sharable in its
encrypted form, the evaluator shall ensure that different users using different
authorization factors are able to successfully access the resource using different
authorization factors. This should include making changes to the resource to
ensure that the same resource is being shared, and that a per-user copy of the
resource is not being made.
Test 2: For each type of resource that is identified in the TSS as sharable in its
encrypted form, the evaluator shall ensure that a different unauthorized user is
unable to access the encrypted file shared. This test succeeds if the unauthorized
user is unable to access a file shared between other authorized users.

FCS_CKM_EXT.3.1

FCS_CKM_EXT.6.1

FCS_CKM_EXT.6.2

FCS_CKM_EXT.6.3

FCS_CKM_EXT.6.4

FCS_CKM_EXT.6.5

Appendix B - Selection-based SFRs

FCS_CKM_EXT.3 Key Encrypting Key (KEK) Support

This is a selection-based component. Its inclusion depends upon selection from FCS_KYC_EXT.1.1.

The TSF shall [selection:
accept KEK from an enterprise management server,
generate KEK cryptographic keys
[selection:

using a Random Bit Generator as specified in FCS_RBG_EXT.1 (from [AppPP])
and with entropy corresponding to the security strength of AES key sizes of
[selection: 128 bit, 256 bit],
derived from a password/passphrase that is conditioned as defined in
FCS_CKM_EXT.6

]
].

Application Note: This requirement must be included in STs in which KEKs originating from
is chosen in FCS_KYC_EXT.1.1.

Evaluation Activity

TSS
The evaluator shall review the TSS to determine that a description covering how and
when KEK(s) are generated exists. The description must cover all environments on
which the TOE is claiming conformance, and include any preconditions that must exist in
order to successfully generate the KEKs. The evaluator shall verify that the description
of how the KEK(s) are generated is consistent with the instructions in the AGD guidance,
and any differences that arise from different platforms are taken into account.

Conditional:
If using a RBG was selected the evaluator shall examine the TSS and verify that it
describes how the functionality described by FCS_RBG_EXT.1 (from the [AppPP]) is
invoked to generate KEK(s). To the extent possible from the description of the RBG
functionality in FCS_RBG_EXT.1 (from [AppPP]), the evaluator shall determine that the
key size being requested is identical to the key size selected.

Conditional:
If derived from a password/passphrase is selected the examination of the TSS section is
performed as part of FCS_CKM_EXT.6 evaluation activities.

Guidance
The evaluator shall review the instructions in the AGD guidance to determine that any
explicit actions that need to be taken by the user to establish a KEK exist-taking into
account any differences that arise from different platforms-and are consistent with the
description in the TSS.

Tests
None.

FCS_CKM_EXT.6 Cryptographic Password/Passphrase Conditioning

This is a selection-based component. Its inclusion depends upon selection from FIA_AUT_EXT.1.1,
FCS_CKM_EXT.2.1, FCS_CKM_EXT.3.1.

The TSF shall support a password/passphrase of up to [selection: [assignment: maximum
value supported by the platform], [assignment: maximum password size, positive integer of
64 or more]] characters used to generate a password authorization factor.

The TSF shall allow passwords to be composed of any combination of upper case
characters, lower case characters, numbers, and the following special characters: "!", "@",
"#", "$", "%", "^", "&", "*", "(", and ")", and [selection: [assignment: other supported special
characters], no other characters].

The TSF shall perform Password-based Key Derivation Functions in accordance with a
specified cryptographic algorithm HMAC-[selection: SHA-256, SHA-384, SHA-512], with
[selection: [assignment: positive integer of 4096 or more] iterations, value supported by the
platform, greater than 1000], and output cryptographic key sizes [selection: 128, 256] that
meet the following: [NIST SP 800-132].

The TSF shall not accept passwords less than [selection: a value settable by the
administrator, [assignment: minimum password length accepted by the TOE, must be >= 1]]
and greater than the maximum password length defined in FCS_CKM_EXT.6.1.

The TSF shall generate all salts using an RBG that meets FCS_RBG_EXT.1 (from [AppPP])

and with entropy corresponding to the security strength selected for PBKDF in
FCS_CKM_EXT.6.3.

Application Note: The password/passphrase is represented on the host machine as a
sequence of characters whose encoding depends on the TOE and the underlying OS. This
sequence must be conditioned into a string of bits that is to be used as a KEK that is the
same size as the FEK.

For FCS_CKM_EXT.6.1, the ST author assigns the maximum size of the
password/passphrase it supports; it must support at least 64 characters or a length defined by
the platform. The selection "maximum value supported by the platform" may only be selected
if "implement platform-provided functionality to provide user authorization" was selected in
FIA_AUT_EXT.1.

For FCS_CKM_EXT.6.2, the ST author assigns any other supported characters; if there are
no other supported characters, they should select "no other characters".

For FCS_CKM_EXT.6.3, the ST author selects the parameters based on the PBKDF used by
the TSF. The key cryptographic key sizes in FCS_CKM_EXT.6.3 are made to correspond to
the KEK key sizes selected in FCS_KYC_EXT.1.

The password/passphrase must be conditioned into a string of bits that forms the submask to
be used as input into the KEK. Conditioning is performed using one of the identified hash
functions in accordance with the process described in NIST SP 800-132. SP 800-132 requires
the use of a pseudo-random function (PRF) consisting of HMAC with an approved hash
function.

Appendix A of SP 800-132 recommends setting the iteration count in order to increase the
computation needed to derive a key from a password and, therefore, increase the workload of
performing a password recovery attack. However, for this PP-Module, a minimum iteration
count of 4096 is required in order to ensure that twelve bits of security is added to the
password/passphrase value. A significantly higher value is recommended to ensure optimal
security. If the platform is leveraged for authentication the value may be a minimum of 1000,
this selection may only be selected if "implement platform-provided functionality to provide
user authorization" was selected in FIA_AUT_EXT.1.

For FCS_CKM_EXT.6.4 If the minimum password length is settable, then ST author chooses
"a value settable by the administrator for this component for FMT_SMF.1.2. If the minimum
length is not settable, the ST author fills in the assignment with the minimum length the
password must be (zero-length passwords are not allowed for compliant TOEs).

This requirement is selection dependent on FIA_AUT_EXT.1.1.

Evaluation Activity

TSS
FCS_CKM_EXT.6.1: There are two aspects of this component that require evaluation:
passwords/passphrases of the length specified in the requirement (at least 64
characters or a length defined by the platform) are supported, and that the characters
that are input are subject to the selected conditioning function. These activities are
separately addressed in the text below.

Support for minimum length: The evaluators shall check to ensure that the TSS
describes the allowable ranges for password/passphrase lengths, and that at least 64
characters or a length defined by the platform may be specified by the user.

Support for character set: The evaluator shall check to ensure that the TSS describes
the allowable character set and that it contains the characters listed in the SFR.

Support for PBKDF: The evaluator shall examine the TSS to ensure that the formation of
all KEKs or FEKs (as decided in the FCS_CKM_EXT.3 selection) is described and that
the key sizes match that described by the ST author.

The evaluator shall check that the TSS describes the method by which the
password/passphrase is first encoded and then fed to the SHA algorithm. The settings
for the algorithm (padding, blocking, etc.) shall be described, and the evaluator shall
verify that these are supported by the selections in this component as well as the
selections concerning the hash function itself. The evaluator shall verify that the TSS
contains a description of how the output of the hash function is used to form the
submask that will be input into the function and is the same length as the KEK as
specified in FCS_KYC_EXT.1.

For the NIST SP 800-132-based conditioning of the password/passphrase, the required
evaluation activities will be performed when doing the evaluation activities for the
appropriate requirements (FCS_COP.1.1(4)). If any manipulation of the key is performed
in forming the submask that will be used to form the FEK or KEK, that process shall be
described in the TSS.

No explicit testing of the formation of the submask from the input password is required.

FCS_CKM_EXT.6.2: The ST author shall provide a description in the TSS regarding the
salt generation. The evaluator shall confirm that the salt is generated using an RBG

FCS_COP.1.1(5)

described in FCS_RBG_EXT.1 (from the [AppPP]).

Guidance
Support for minimum length: The evaluators shall check the Operational Guidance to
determine that there are instructions on how to generate large passwords/passphrases,
and instructions on how to configure the password/passphrase length to provide entropy
commensurate with the keys that the authorization factor is protecting.

Tests
Support for Password/Passphrase characteristics: In addition to the analysis above, the
evaluator shall also perform the following tests on a TOE configured according to the
Operational Guidance:

Test 1: Ensure that the TOE supports password/passphrase lengths as defined in
the SFR assignments.
Test 2: Ensure that the TOE does not accept more than the maximum number of
characters specified in FCS_CKM_EXT.6.1.
Test 3: Ensure that the TOE does not accept less than the minimum number of
characters specified in FCS_CKM_EXT.6.4. If the minimum length is settable by
the administrator, the evaluator determines the minimum length or lengths to test.
Test 4: Ensure that the TOE supports passwords consisting of all characters listed
in FCS_CKM_EXT.6.2.

Conditioning: No explicit testing of the formation of the authorization factor from the
input password/passphrase is required.

FCS_COP.1(5) Cryptographic operation (Key Wrapping)

This is a selection-based component. Its inclusion depends upon selection from FCS_KYC_EXT.1.1.

The TSF shall [selection: use platform-provided functionality to perform Key Wrapping,
implement functionality to perform Key Wrapping] in accordance with a specified
cryptographic algorithm [AES] in the following modes [selection:

Key Wrap,
Key Wrap with Padding,
GCM mode,
CCM mode

] and cryptographic key sizes [selection: 128 bits (AES), 256 bits (AES)] that meet the
following: [selection:

"NIST SP 800-38C",
"NIST SP 800-38D",
"NIST SP 800-38F"

] and no other standards.

Application Note: This requirement is used in the body of the ST if the ST author chooses to
use key wrapping in the key chaining approach that is specified in FCS_KYC_EXT.1.

Evaluation Activity

TSS
Conditional: If use platform provided functionality was selected, then the evaluator shall
examine the TSS to verify that it describes how the FEK encryption/decryption is
invoked.

Conditional: If implement functionality was selected, The evaluator shall check that the
TSS includes a description of encryption function(s) used for key wrapping. The
evaluator should check that this description of the selected encryption function includes
the key sizes and modes of operations as specified in the selection above. The evaluator
shall check that the TSS describes the means by which the TOE satisfies constraints on
algorithm parameters included in the selections made for 'cryptographic algorithm' and
'list of standards'.

The evaluator shall verify the TSS includes a description of the key wrap function(s) and
shall verify the key wrap uses an approved key wrap algorithm according to the
appropriate specification.

KMD

The evaluator shall review the KMD to ensure that all keys are wrapped using the
approved method and a description of when the key wrapping occurs.

Guidance
If multiple encryption modes are supported, the evaluator examines the guidance
documentation to determine that the method of choosing a specific mode/key size by the
end user is described.

Tests
The evaluation activity tests specified for AES in GCM mode in the underlying [AppPP]
shall be performed in the case that "GCM" is selected in the requirement.

AES Key Wrap (AES-KW) and Key Wrap with Padding (AES-KWP) Test

The evaluator will test the authenticated encryption functionality of AES-KW for EACH
combination of the following input parameter lengths:

128 and 256 bit key encryption keys (KEKs)
Three plaintext lengths. One of the plaintext lengths shall be two semi-blocks (128
bits). One of the plaintext lengths shall be three semi-blocks (192 bits). The third
data unit length shall be the longest supported plaintext length less than or equal
to 64 semi-blocks (4096 bits).

using a set of 100 key and plaintext pairs and obtain the ciphertext that results from
AES-KW authenticated encryption. To determine correctness, the evaluator will use the
AES-KW authenticated-encryption function of a known good implementation.

The evaluator will test the authenticated-decryption functionality of AES-KW using the
same test as for authenticated-encryption, replacing plaintext values with ciphertext
values and AES-KW authenticated-encryption with AES-KW authenticated-decryption.

The evaluator will test the authenticated-encryption functionality of AES-KWP using the
same test as for AES-KW authenticated-encryption with the following change in the
three plaintext lengths:

One plaintext length shall be one octet. One plaintext length shall be 20 octets (160
bits).
One plaintext length shall be the longest supported plaintext length less than or
equal to 512 octets (4096 bits).

The evaluator will test the authenticated-decryption functionality of AES-KWP using the
same test as for AES-KWP authenticated-encryption, replacing plaintext values with
ciphertext values and AES-KWP authenticated-encryption with AES-KWP authenticated-
decryption.

AES-CCM Tests

It is not recommended that evaluators use values obtained from static sources such as
http://csrc.nist.gov/groups/STM/cavp/documents/mac/ccmtestvectors.zip or use values
not generated expressly to exercise the AES-CCM implementation.

The evaluator shall test the generation-encryption and decryption-verification
functionality of AES-CCM for the following input parameter and tag lengths: Keys: All
supported and selected key sizes (e.g., 128, 256 bits). Associated Data: Two or three
values for associated data length: The minimum (≥ 0 bytes) and maximum (≤ 32 bytes)
supported associated data lengths, and 2^16 (65536) bytes, if supported. Payload: Two
values for payload length: The minimum (≥ 0 bytes) and maximum (≤ 32 bytes)
supported payload lengths. Nonces: All supported nonce lengths (7, 8, 9, 10, 11, 12, 13)
in bytes. Tag: All supported tag lengths (4, 6, 8, 10, 12, 14, 16) in bytes.

The testing for CCM consists of five tests. To determine correctness in each of the
below tests, the evaluator shall compare the ciphertext with the result of encryption of
the same inputs with a known good implementation.

Variable Associated Data Test
For each supported key size and associated data length, and any supported payload
length, nonce length, and tag length, the evaluator shall supply one key value, one
nonce value, and 10 pairs of associated data and payload values, and obtain the
resulting ciphertext.

Variable Payload Text
For each supported key size and payload length, and any supported associated data
length, nonce length, and tag length, the evaluator shall supply one key value, one
nonce value, and 10 pairs of associated data and payload values, and obtain the
resulting ciphertext.

Variable Nonce Test
For each supported key size and nonce length, and any supported associated data
length, payload length, and tag length, the evaluator shall supply one key value, one
nonce value, and 10 pairs of associated data and payload values, and obtain the
resulting ciphertext.

Variable Tag Test
For each supported key size and tag length, and any supported associated data length,
payload length, and nonce length, the evaluator shall supply one key value, one nonce
value, and 10 pairs of associated data and payload values, and obtain the resulting
ciphertext.

Decryption-Verification Process Test
To test the decryption-verification functionality of AES-CCM, for each combination of
supported associated data length, payload length, nonce length, and tag length, the
evaluator shall supply a key value and 15 sets of input plus ciphertext, and obtain the
decrypted payload. Ten of the 15 input sets supplied should fail verification and five
should pass.

FCS_COP.1.1(6)

FCS_COP.1(6) Cryptographic operation (Key Transport)

This is a selection-based component. Its inclusion depends upon selection from FCS_KYC_EXT.1.1.

The TSF shall perform [key transport] in accordance with a specified cryptographic algorithm
[RSA] in the following modes [selection: KTS-OAEP, KTS-KEM-KWS] and cryptographic
key sizes [selection: 3072, 4096] bits that meet the following: [NIST SP 800-56B, Revision 1].

Application Note: This requirement is used in the body of the ST if the ST author chooses to
use key transport in the key chaining approach that is specified in FCS_KYC_EXT.1.

Evaluation Activity

TSS
The evaluator shall verify the TSS provides a high level description of the RSA scheme
and the cryptographic key size that is being used, and that the asymmetric algorithm
being used for key transport is RSA. If more than one scheme/key size are allowed, then
the evaluator shall make sure and test all combinations of scheme and key size. There
may be more than one key size to specify - an RSA modulus size (and/or encryption
exponent size), an AES key size, hash sizes, MAC key/MAC tag size.

If the KTS-OAEP scheme was selected, the evaluator shall verify that the TSS identifies
the hash function, the mask generating function, the random bit generator, the
encryption primitive and decryption primitive. If the KTS-KEM-KWS scheme was
selected, the evaluator shall verify that the TSS identifies the key derivation method, the
AES-based key wrapping method, the secret value encapsulation technique, and the
random number generator.

Guidance
None.

Tests
For each supported key transport schema, the evaluator shall initiate at least 25
sessions that require key transport with an independently developed remote instance of
a key transport entity, using known RSA key-pairs. The evaluator shall observe traffic
passed from the sender-side and to the receiver-side of the TOE, and shall perform the
following tests, specific to which key transport scheme was employed. If the KTS-OAEP
scheme was selected, the evaluator shall perform the following tests:

Test 1: The evaluator shall inspect each cipher text, C, produced by the RSA-
OAEP encryption operation of the TOE and make sure it is the correct length,
either 256 or 384 bytes depending on RSA key size. The evaluator shall also feed
into the TOE's RSA-OEAP decryption operation some cipher texts that are the
wrong length and verify that the erroneous input is detected and that the
decryption operation exits with an error code.
Test 2: The evaluator shall convert each cipher text, C, produced by the RSA-
OAEP encryption operation of the TOE to the correct cipher text integer, c, and use
the decryption primitive to compute em = RSADP((n,d),c) and convert em to the
encoded message EM. The evaluator shall then check that the first byte of EM is
0x00. The evaluator shall also feed into the TOE's RSA-OEAP decryption
operation some cipher texts where the first byte of EM was set to a value other
than 0x00, and verify that the erroneous input is detected and that the decryption
operation exits with an error code.
Test 3: The evaluator shall decrypt each cipher text, C, produced by the RSA-
OAEP encryption operation of the TOE using RSADP, and perform the OAEP
decoding operation (described in NIST SP 800-56B section 7.2.2.4) to recover HA'
|| X. For each HA', the evaluator shall take the corresponding A and the specified
hash algorithm and verify that HA' = Hash(A). The evaluator shall also force the
TOE to perform some RSA-OAEP decryption where the A value is passed
incorrectly, and the evaluator shall verify that an error is detected.
Test 4: The evaluator shall check the format of the 'X' string recovered in
OAEP.Test.3 to ensure that the format is of the form PS || 01 || K, where PS
consists of zero or more consecutive 0x00 bytes and K is the transported keying
material. The evaluator shall also feed into the TOE's RSA-OEAP decryption
operation some cipher texts for which the resulting 'X' strings do not have the
correct format (i.e., the leftmost non-zero byte is not 0x01). These incorrectly
formatted 'X' variables shall be detected by the RSA-OEAP decrypt function.
Test 5: The evaluator shall trigger all detectable decryption errors and validate that
the returned error codes are the same and that no information is given back to the
sender on which type of error occurred. The evaluator shall also validate that no
intermediate results from the TOE's receiver-side operations are revealed to the
sender.

If the KTS-KEM-KWS scheme was selected, the evaluator shall perform the following
tests:

Test 1: The evaluator shall inspect each cipher text, C, produced by KTS-KEM-
KWS encryption operation of the TOE and make sure the length (in bytes) of the
cipher text, cLen, is greater than nLen (the length, in bytes, of the modulus of the
RSA public key) and that cLen - nLen is consistent with the byte lengths supported
by the key wrapping algorithm. The evaluator shall feed into the KTS-KEM-KWS
decryption operation a cipher text of unsupported length and verify that an error is

FCS_COP.1.1(7)

FCS_KDF_EXT.1.1

detected and that the decryption process stops.
Test 2: The evaluator shall separate the cipher text, C, produced by the sender-
side of the TOE into its C0 and C1 components and use the RSA decryption
primitive to recover the secret value, Z, from C0. The evaluator shall check that the
unsigned integer represented by Z is greater than 1 and less than n-1, where n is
the modulus of the RSA public key. The evaluator shall construct examples where
the cipher text is created with a secret value Z = 1 and make sure the KTS-KEM-
KWS decryption process detects the error. Similarly, the evaluator shall construct
examples where the cipher text is created with a secret value Z = n - 1 and make
sure the KTS-KEM-KWS decryption process detects the error.
Test 3: The evaluator shall attempt to successfully recover the secret value Z,
derive the key wrapping key, KWK, and unwrap the KWA-cipher text following the
KTS-KEM-KWS decryption process given in NISP SP 800-56B section 7.2.3.4. If
the key-wrapping algorithm is AES-CCM, the evaluator shall verify that the value of
any (unwrapped) associated data, A, that was passed with the wrapped keying
material is correct The evaluator shall feed into the TOE's KTS-KEM-KWS
decryption operation examples of incorrect cipher text and verify that a decryption
error is detected. If the key-wrapping algorithm is AES-CCM, the evaluator shall
attempt at least one decryption where the wrong value of A is given to the KTS-
KEM-KWS decryption operation and verify that a decryption error is detected.
Similarly, if the key-wrapping algorithm is AES-CCM, the evaluator shall attempt at
least one decryption where the wrong nonce is given to the KTS-KEM-KWS
decryption operation and verify that a decryption error is detected.
Test 4: The evaluator shall trigger all detectable decryption errors and validate that
the resulting error codes are the same and that no information is given back to the
sender on which type of error occurred. The evaluator shall also validate that no
intermediate results from the TOE's receiver-side operations (in particular, no Z
values) are revealed to the sender.

FCS_COP.1(7) Cryptographic operation (Key Encryption)

This is a selection-based component. Its inclusion depends upon selection from FCS_KYC_EXT.1.1.

The TSF shall [selection: use platform-provided functionality to perform Key
Encryption, perform key encryption and decryption] in accordance with a specified
cryptographic algorithm [AES used in CBC mode] and cryptographic key sizes [selection:

128,
256

] bits that meet the following: [AES as specified in SP 800-38A].

Application Note: This requirement is used in the body of the ST if the ST author chooses to
use AES encryption/decryption for protecting the keys as part of the key chaining approach
that is specified in FCS_KYC_EXT.1.

Evaluation Activity

TSS

Requirement met by the platform

If the platform provides the FEK encryption/decryption, then the evaluator shall examine
the TSS to verify that it describes how the FEK encryption/decryption is invoked.

Requirement met by the TOE

The evaluator shall verify the TSS includes a description of the key size used for
encryption and the mode used for the key encryption

Guidance
None.

Tests
The evaluation activity tests specified for AES in CBC mode in FCS_COP.1.1(1) in the
underlying [AppPP] shall be performed.

FCS_KDF_EXT.1 Cryptographic Key Derivation Function

This is a selection-based component. Its inclusion depends upon selection from FCS_KYC_EXT.1.1.

The TSF shall [accept [selection: a submask generated by an RBG as specified in
FCS_RBG_EXT.1 (from [AppPP]), a conditioned password, an imported submask] to derive
an intermediate key, as defined in [selection:

NIST SP 800-108 [selection: KDF in Counter Mode, KDF in Feedback Mode, KDF in
Double-Pipeline Iteration Mode] ,
NIST SP 800-132

] using the keyed-hash functions specified in FCS_COP.1(4) (from [AppPP]), such that the

FCS_SMC_EXT.1.1

FCS_VAL_EXT.2.1

output is at least of equivalent security strength (in number of bits) to the [FEK]].

Application Note: This requirement is used in the body of the ST if the ST author chooses to
use key derivation in the key chaining approach that is specified in FCS_KYC_EXT.1. This
requirement establishes acceptable methods for generating a new random key or an existing
submask to create a new key along the key chain.

Evaluation Activity

TSS
The evaluator shall verify the TSS includes a description of the key derivation function
and shall verify the key derivation uses an approved derivation mode and key expansion
algorithm according to SP 800-108 and SP 800-132.

Guidance
None.

Tests
None.

FCS_SMC_EXT.1 Submask Combining

This is a selection-based component. Its inclusion depends upon selection from FCS_KYC_EXT.1.1.

The TSF shall [combine submasks using the following method [selection: exclusive OR
(XOR), SHA-256, SHA-384, SHA-512, HMAC-SHA-256, HMAC-SHA-384, HMAC-SHA-512] to
generate an intermediate key].

Application Note: This requirement specifies the way that a product may combine the
various submasks by using either an XOR or an approved SHA-hash. This requirement is
selection dependent on FCS_KYC_EXT.1.1.

Evaluation Activity

TSS
If keys are XORed together to form an intermediate key, the TSS section shall identify
how this is performed (e.g., if there are ordering requirements, checks performed, etc.).
The evaluator shall also confirm that the TSS describes how the length of the output
produced is at least the same as that of the FEK.

Guidance
None.

Tests
None.

FCS_VAL_EXT.2 Validation Remediation

This is a selection-based component. Its inclusion depends upon selection from FIA_AUT_EXT.1.1.

The TSF shall [selection:
[perform a key destruction of the FEK(s)] upon a configurable number of consecutive
failed validation attempts,
institute a delay such that only [assignment: ST author specified number of attempts]
can be made within a 24 hour period,
block validation after [assignment: ST author specified number of attempts] of
consecutive failed validation attempts,
require power cycle/reset the TOE after [assignment: ST author specified number of
attempts] of consecutive failed validation attempts

].

Application Note: This SFR must be included if "provide user authorization" is selected in
FIA_AUT_EXT.1.1.

Two iterations of this SFR are also defined in PP-Module for File Encryption Enterprise
Management. If the TOE also claims this module, the ST author should iterate these SFRs by
using "/FE" and "/EM" as unique identifiers for the iterations. This will allow the reader to
easily determine which iteration applies to each TOE component.

This requirement is used in the body of the ST if the ST author chooses "provide user
authorization" in FIA_AUT_EXT.1.1.

Evaluation Activity

TSS
The evaluator shall examine the TSS to determine which remediation options are

supported for which authentication options.

Guidance
If the remediation functionality is configurable, the evaluator shall examine the
operational guidance to ensure it describes how to configure the TOE to ensure the
limits regarding validation attempts can be established.

Tests
The evaluator shall perform the following tests:

Test 1: The evaluator shall determine the limit on the average rate of the number
of consecutive failed authorization attempts. For each authentication factor
supported, the evaluator will test the TOE by entering that number of incorrect
authorization factors in consecutive attempts to access the protected data. If the
limit mechanism includes any "lockout" period, the time period tested should
include at least one such period. Then the evaluator will verify that the TOE
behaves as described in the TSS.

Appendix C - Objective SFRs

This section is reserved for requirements that are not currently prescribed by this PP-Module but are expected to be included in
future versions of the PP-Module. Vendors planning on having evaluations performed against future products are encouraged
to plan for these objective requirements to be met.

This PP-Module does not define any objective SFRs.

Appendix D - Extended Component Definitions

This appendix contains the definitions for the extended requirements that are used in the PP-Module including those used in
Appendices A through C.

D.1 Background and Scope

This Appendix provides a definition for all of the extended components introduced in this PP-Module. These components are
identified in the following table:

Functional Class Functional Components

Cryptographic Support (FCS) FCS_CKM_EXT Cryptographic Key Management
FCS_IV_EXT Initialization Vector Generation
FCS_KYC_EXT Key Chaining and Key Storage
FCS_VAL_EXT Validation

User Data Protection (FDP) FDP_PRT_EXT Protection of Selected User Data

Identification and Authentication
(FIA)

FIA_AUT_EXT Authorization

Protection of the TSF (FPT) FPT_KYP_EXT Protection of Key and Key Material

Cryptographic Support (FCS) FCS_COP_EXT Cryptographic Operation

User Data Protection (FDP) FDP_AUT_EXT User Data Authentication
FDP_PM_EXT Protection of Data in Power Managed
States

Identification and Authentication
(FIA)

FIA_FCT_EXT Authorization Factors

Cryptographic Support (FCS) FCS_KDF_EXT Cryptographic Key Derivation Function
FCS_SMC_EXT Submask Combining
FCS_VAL_EXT Validation Remediation

D.2 Extended Component Definitions

FCS_CKM_EXT Cryptographic Key Management
Components in this family define requirements for key management activities that are beyond the scope of what is defined in
the FCS_CKM family in CC Part 2.

Component Leveling
FCS_CKM_EXT.2, File Encryption Key (FEK) Generation, describes the method by which the TSF acquires or generates file
encryption keys.

Management: FCS_CKM_EXT.2
There are no specific management functions identified.

Audit: FCS_CKM_EXT.2
There are no auditable events foreseen.

FCS_CKM_EXT.2 File Encryption Key (FEK) Generation
Hierarchical to: No other components.

Dependencies to: FCS_RBG_EXT.1 Random Bit Generation Services

FCS_CKM_EXT.2.1

The TSF shall [selection:
accept FEK from an enterprise management server,
generate FEK cryptographic keys
[selection:

using a Random Bit Generator as specified in FCS_RBG_EXT.1 (from [AppPP]) and with entropy corresponding to
the security strength of AES key sizes of [selection: 128 bit, 256 bit],
derived from a password/passphrase that is conditioned as defined in FCS_CKM_EXT.6

]
].

FCS_CKM_EXT.2.2

The TSF shall use a unique FEK for each file (or set of files) using the mechanism on the client as specified in
FCS_CKM_EXT.2.1.

Component Leveling
FCS_CKM_EXT.4, Cryptographic Key Destruction, describes supported methods for key destruction.

Management: FCS_CKM_EXT.4
The following actions could be considered for the management functions in FMT:

Manually perform cryptographic erasure.

Audit: FCS_CKM_EXT.4
The following actions should be auditable if FAU_GEN Security audit data generation is included in the PP/ST:

Basic: Manual erasure of cryptographic data.

FCS_CKM_EXT.4 Cryptographic Key Destruction
Hierarchical to: No other components.

Dependencies to: No dependencies.

FCS_CKM_EXT.4.1

The TSF shall destroy cryptographic keys in accordance with a specified cryptographic key destruction method [selection:
For volatile memory, the destruction shall be executed by a [selection:

single overwrite consisting of [selection: a pseudo-random pattern using the TSF's RBG, zeroes, ones, new value
of a key, [assignment: any value that does not contain any CSP]] ,
removal of power to the memory,
destruction of reference to the key directly followed by a request for garbage collection

] ,
For non-volatile memory, the destruction shall be executed by [selection:

destruction of all KEKs protecting the target key, where none of the KEKs protecting the target key are derived ,
the invocation of an interface provided by the underlying platform that [selection:

logically addresses the storage location of the key and performs a [selection: single, [assignment: ST author
defined multi-pass]] overwrite consisting of [selection: a pseudo-random pattern using the TSF's RBG, zeroes,
ones, new value of a key, [assignment: any value that does not contain any CSP]] ,
instructs the underlying platform to destroy the abstraction that represents the key

]
]

].

FCS_CKM_EXT.4.2

The TSF shall destroy all keys and key material when no longer needed.

Component Leveling
FCS_CKM_EXT.5, File Authentication Key (FAK) Support, describes the secure storage of file encryption keys.

Management: FCS_CKM_EXT.5
There are no specific management functions identified.

Audit: FCS_CKM_EXT.5
There are no auditable events foreseen.

FCS_CKM_EXT.5 File Authentication Key (FAK) Support
Hierarchical to: No other components.

Dependencies to: FCS_COP_EXT.1 FAK Encryption/Decryption Support
FCS_RBG_EXT.1 Random Bit Generation Services
FDP_AUT_EXT.2 Data Authentication Using Cryptographic Keyed-Hash Functions

FCS_CKM_EXT.5.1

The TSF shall use a FAK to authenticate sensitive data when a cryptographic, keyed hashing function is used for data
authentication and shall be supported in the following manner: [selection:

A FAK conditioned from a password/passphrase shall never be stored in non-volatile memory,
a FAK will be stored in non-volatile memory encrypted with a KEK as specified in FCS_COP.1(5) using authorization
factors as specified in FIA_AUT_EXT.1

].

FCS_CKM_EXT.5.2

The TSF shall create a unique FAK for each file (or set of files) using the mechanism on the client as specified in
FCS_RBG_EXT.1 (from [AppPP]).

FCS_CKM_EXT.5.3

The FAKs must be generated by the TOE as specified in FDP_AUT_EXT.2.9.

FCS_CKM_EXT.5.4

The TSF will not write FAKs to non-volatile memory.

FCS_CKM_EXT.5.5

The FAK shall be protected in a manner conformant to FCS_COP_EXT.1.

Component Leveling
FCS_CKM_EXT.3, Key Encrypting Key (KEK) Support, describes the method by which the TSF acquires or generates key
encryption keys.

Management: FCS_CKM_EXT.3
There are no specific management functions identified.

Audit: FCS_CKM_EXT.3
There are no auditable events foreseen.

FCS_CKM_EXT.3 Key Encrypting Key (KEK) Support
Hierarchical to: No other components.

Dependencies to: FCS_RBG_EXT.1 Random Bit Generation Services

FCS_CKM_EXT.3.1

The TSF shall [selection:
accept KEK from an enterprise management server,
generate KEK cryptographic keys
[selection:

using a Random Bit Generator as specified in FCS_RBG_EXT.1 (from [AppPP]) and with entropy corresponding to
the security strength of AES key sizes of [selection: 128 bit, 256 bit],
derived from a password/passphrase that is conditioned as defined in FCS_CKM_EXT.6

]
].

Component Leveling
FCS_CKM_EXT.6, Cryptographic Password/Passphrase Conditioning, requires the TSF to implement password/passphrase
conditioning using a specified algorithm and with specific constraints on the password/passphrase composition.

Management: FCS_CKM_EXT.6
There are no specific management functions identified.

Audit: FCS_CKM_EXT.6
There are no auditable events foreseen.

FCS_CKM_EXT.6 Cryptographic Password/Passphrase Conditioning
Hierarchical to: No other components.

Dependencies to: FCS_COP.1 Cryptographic Operation
FCS_RBG_EXT.1 Random Bit Generation Services

FCS_CKM_EXT.6.1

The TSF shall support a password/passphrase of up to [selection: [assignment: maximum value supported by the platform],
[assignment: maximum password size, positive integer of 64 or more]] characters used to generate a password authorization
factor.

FCS_CKM_EXT.6.2

The TSF shall allow passwords to be composed of any combination of upper case characters, lower case characters, numbers,
and the following special characters: "!", "@", "#", "$", "%", "^", "&", "*", "(", and ")", and [selection: [assignment: other
supported special characters], no other characters].

FCS_CKM_EXT.6.3

The TSF shall perform Password-based Key Derivation Functions in accordance with a specified cryptographic algorithm
HMAC-[selection: SHA-256, SHA-384, SHA-512], with [selection: [assignment: positive integer of 4096 or more] iterations,
value supported by the platform, greater than 1000], and output cryptographic key sizes [selection: 128, 256] that meet the
following: [NIST SP 800-132].

FCS_CKM_EXT.6.4

The TSF shall not accept passwords less than [selection: a value settable by the administrator, [assignment: minimum
password length accepted by the TOE, must be >= 1]] and greater than the maximum password length defined in
FCS_CKM_EXT.6.1.

FCS_CKM_EXT.6.5

The TSF shall generate all salts using an RBG that meets FCS_RBG_EXT.1 (from [AppPP]) and with entropy corresponding
to the security strength selected for PBKDF in FCS_CKM_EXT.6.3.

FCS_IV_EXT Initialization Vector Generation
Components in this family define requirements for initialization vector generation.

Component Leveling
FCS_IV_EXT.1, Initialization Vector Generation, specifies the required initialization vector generation methods used by the TSF
for various cryptographic algorithms.

Management: FCS_IV_EXT.1
There are no specific management functions identified.

Audit: FCS_IV_EXT.1
There are no auditable events foreseen.

FCS_IV_EXT.1 Initialization Vector Generation
Hierarchical to: No other components.

Dependencies to: FCS_COP.1 Cryptographic Operation

FCS_IV_EXT.1.1

The TSF shall [selection:
invoke platform-provided functionality to generate IVs,
generate IVs with the following properties [selection:

CBC: IVs shall be non-repeating and unpredictable,
CCM: Nonce shall be non-repeating and unpredictable,
XTS: No IV. Tweak values shall be non-negative integers, assigned consecutively, and starting at an arbitrary non-
negative integer,
GCM: IV shall be non-repeating. The number of invocations of GCM shall not exceed 2^32 for a given secret key

]
].

FCS_KYC_EXT Key Chaining and Key Storage
Components in this family define requirements for the secure storage of keys through the use of a logical key chain.

Component Leveling
FCS_KYC_EXT.1, Key Chaining and Key Storage, requires the TSF to specify how it implements key chaining.

Management: FCS_KYC_EXT.1
The following actions could be considered for the management functions in FMT:

Configuration of the cryptographic functionality.

Audit: FCS_KYC_EXT.1
There are no auditable events foreseen.

FCS_KYC_EXT.1 Key Chaining and Key Storage
Hierarchical to: No other components.

Dependencies to: FCS_COP.1 Cryptographic Operation
FCS_KDF_EXT.1 Cryptographic Key Derivation Function
FCS_SMC_EXT.1 Submask Combining

FCS_KYC_EXT.1.1

The TSF shall maintain a key chain of: [selection:
a conditioned password as the [FEK],
[KEKs] originating from [selection: one or more authorization factors(s), a file encryption enterprise management
server] to [selection: the FEK(s), a file encryption enterprise management server] using the following method(s):
[selection:

utilization of the platform key storage,
utilization of platform key storage that performs key wrap with a TSF provided key,
implementation of key wrapping as specified in FCS_COP.1(5),
implementation of key combining as specified in FCS_SMC_EXT.1,
implementation of key encryption as specified in FCS_COP.1(7),
implementation of key transport as specified in FCS_COP.1(6),
implementation of key derivation as specified in FCS_KDF_EXT.1

] while maintaining an effective strength of [selection:
[selection: 128 bits, 256 bits] for symmetric keys ,
[selection: 128 bits, 192 bits, 256 bits] for asymmetric keys

] commensurate with the strength of the FEK
] and [selection:

no supplemental key chains,
other supplemental key chains that protect a key or keys in the primary key chain using the following method(s):
[selection:

utilization of the platform key storage,
utilization of platform key storage that performs key wrap with a TSF provided key,
implementation of key wrapping as specified in FCS_COP.1(5),
implementation of key combining as specified in FCS_SMC_EXT.1,
implementation of key encryption as specified in FCS_COP.1(7),
implementation of key transport as specified in FCS_COP.1(6),
implementation of key derivation as specified in FCS_KDF_EXT.1

]
].

FCS_VAL_EXT Validation
Components in this family define requirements for validation of data supplied to the TOE and any consequences resulting from
failed validation attempts.

Component Leveling
FCS_VAL_EXT.1, Validation, requires the TSF to specify what data is being validated and how the validation is performed.

Management: FCS_VAL_EXT.1
There are no specific management functions identified.

Audit: FCS_VAL_EXT.1
The following actions should be auditable if FAU_GEN Security audit data generation is included in the PP/ST:

Minimal: Change to configuration of validation function behavior.

FCS_VAL_EXT.1 Validation
Hierarchical to: No other components.

Dependencies to: FCS_COP.1 Cryptographic Operation

FCS_VAL_EXT.1.1

The TSF shall perform validation of the [user] by [selection:
receiving assertion of the subject's validity from [assignment: Operational Environment component responsible for
authentication],
validating the [selection: submask, intermediate key] using the following methods: [selection:

key wrap as specified in FCS_COP.1(5),
hash the [selection: submask, intermediate key, FEK] as specified in FCS_COP.1(2) (from [AppPP]) and compare
it to a stored hash,
decrypt a known value using the [selection: submask, intermediate key, FEK] as specified in FCS_COP.1(1) (from
[AppPP]) and compare it against a stored known value

]
].

FCS_VAL_EXT.1.2

The TSF shall require validation of the [user] prior to [decrypting any FEK].

Component Leveling
FCS_VAL_EXT.2, Validation Remediation, requires the TSF to specify what the TOE’s response is in the event of a data
validation failure.

Management: FCS_VAL_EXT.2
The following actions could be considered for the management functions in FMT:

Configuration of the number of failed validation attempts required to trigger corrective behavior.
Configuration of the corrective behavior to issue in the event of an excessive number of failed validation attempts.

Audit: FCS_VAL_EXT.2
The following actions should be auditable if FAU_GEN Security audit data generation is included in the PP/ST:

Minimal: Triggering of excessive validation failure response behavior.

FCS_VAL_EXT.2 Validation Remediation
Hierarchical to: No other components.

Dependencies to: FCS_VAL_EXT.1 Validation

FCS_VAL_EXT.2.1

The TSF shall [selection:
[perform a key destruction of the FEK(s)] upon a configurable number of consecutive failed validation attempts,
institute a delay such that only [assignment: ST author specified number of attempts] can be made within a 24 hour
period,
block validation after [assignment: ST author specified number of attempts] of consecutive failed validation attempts,
require power cycle/reset the TOE after [assignment: ST author specified number of attempts] of consecutive failed
validation attempts

].

FDP_PRT_EXT Protection of Selected User Data
Components in this family define requirements for the TOE's ability to protect sensitive data at rest.

Component Leveling
FDP_PRT_EXT.1, Protection of Selected User Data, requires the TOE to encrypt and decrypt sensitive data using a specified
cryptographic algorithm.

Management: FDP_PRT_EXT.1
There are no specific management functions identified.

Audit: FDP_PRT_EXT.1
There are no auditable events foreseen.

FDP_PRT_EXT.1 Protection of Selected User Data
Hierarchical to: No other components.

Dependencies to: FCS_CKM_EXT.4 Cryptographic Key Destruction
FCS_COP.1 Cryptographic Operation

FDP_PRT_EXT.1.1

The TSF shall perform encryption and decryption of the user-selected file (or set of files) in accordance with FCS_COP.1(1)
(from [AppPP]).

FDP_PRT_EXT.1.2

The TSF shall [selection: invoke platform-provided functionality, implement functionality] to ensure that all sensitive data
created by the TOE when decrypting/encrypting the user-selected file (or set of files) are destroyed in volatile and non-volatile
memory when the data is no longer needed according to FCS_CKM_EXT.4.

Component Leveling
FDP_PRT_EXT.2, Destruction of Plaintext Data, requires the TOE to destroy any plaintext data that is created as a result of
the encryption/decryption process for sensitive data.

Management: FDP_PRT_EXT.2
There are no specific management functions identified.

Audit: FDP_PRT_EXT.2
There are no auditable events foreseen.

FDP_PRT_EXT.2 Destruction of Plaintext Data
Hierarchical to: No other components.

Dependencies to: FCS_CKM_EXT.4 Cryptographic Key Destruction
FDP_PRT_EXT.1 Protection of Selected User Data

FDP_PRT_EXT.2.1

The TSF shall [selection: invoke platform-provided functionality, implement functionality] to ensure that all original plaintext
data created when decrypting/encrypting the user-selected file (or set of files) are destroyed in volatile and non-volatile memory
according to FCS_CKM_EXT.4 upon completion of the decryption/encryption operation.

Component Leveling
FDP_PRT_EXT.3, Protection of Third-Party Data, requires the TOE to destroy temporary files that may be created during the
encryption or decryption process to prevent the inadvertent disclosure of sensitive data.

Management: FDP_PRT_EXT.3
There are no specific management functions identified.

Audit: FDP_PRT_EXT.3
There are no auditable events foreseen.

FDP_PRT_EXT.3 Protection of Third-Party Data
Hierarchical to: No other components.

Dependencies to: FDP_PRT_EXT.1 Protection of Selected User Data

FDP_PRT_EXT.3.1

The TSF shall ensure that all temporary files created by [selection: all applications, [assignment: subset of applications that
can integrate with the FE]]when decrypting/encrypting the user-selected file (or set of files) are removed or encrypted upon
completion of the decryption/encryption operation.

FIA_AUT_EXT Authorization
Components in this family define requirements for how subject authorization is performed. Where FIA_UAU in CC Part 2
defines circumstances where authentication is required, this family describes the specific computational methods used to
determine whether a subject’s presented authentication data is valid.

Component Leveling
FIA_AUT_EXT.1, Subject Authorization, specifies the manner in which the TSF performs user authorization.

Management: FIA_AUT_EXT.1
The following actions could be considered for the management functions in FMT:

Configuration of authentication factors.

Audit: FIA_AUT_EXT.1
The following actions should be auditable if FAU_GEN Security audit data generation is included in the PP/ST:

Minimal: Failure of authorization function.
Basic: All use of authorization function.

FIA_AUT_EXT.1 Subject Authorization
Hierarchical to: No other components.

Dependencies to: FCS_CKM_EXT.6 Cryptographic Password/Passphrase Conditioning
FCS_RBG_EXT.1 Random Bit Generation Services

FIA_AUT_EXT.1.1

The TSF shall [selection: implement platform-provided functionality to provide user authorization, provide user authorization]
based on [selection:

a password authorization factor conditioned as defined in FCS_CKM_EXT.6,
an external smart card factor that is at least the same bit-length as the FEK(s), and is protecting a submask that is
[selection: generated by the TOE (using the RBG as specified in FCS_RBG_EXT.1 (from [AppPP])), generated by the
platform] protected using RSA with key size [selection: 3072 bits, 4096 bits] with user presence proved by presentation of
the smart card and [selection: no PIN, an OE defined PIN, a configurable PIN] ,
an external USB token factor that is at least the same security strength as the FEK(s), and is providing a submask
generated by the [selection: TOE (using the RBG as specified in FCS_RBG_EXT.1 (from [AppPP])), platform]

].

FPT_KYP_EXT Protection of Key and Key Material
Components in this family define requirements for secure storage of keys.

Component Leveling
FPT_KYP_EXT.1, Protection of Keys and Key Material, requires the TSF to protect stored key data in a specified manner.

Management: FPT_KYP_EXT.1
The following actions could be considered for the management functions in FMT:

Configuration of the cryptographic functionality.

Audit: FPT_KYP_EXT.1
There are no auditable events foreseen.

FPT_KYP_EXT.1 Protection of Keys and Key Material
Hierarchical to: No other components.

Dependencies to: FCS_COP.1 Cryptographic Operation
FCS_KDF_EXT.1 Cryptographic Key Derivation Function
FCS_KYC_EXT.1 Key Chaining and Key Storage
FCS_SMC_EXT.1 Submask Combining
FCS_STO_EXT.1 Storage of Credentials

FPT_KYP_EXT.1.1

The TSF shall [selection:
not store keys in non-volatile memory,
store keys in non-volatile memory only when [selection:

wrapped, as specified in FCS_COP.1(5),
encrypted, as specified in FCS_COP.1(7),
the plaintext key is stored in the underlying platform's keystore as specified by FCS_STO_EXT.1.1 (from [AppPP]),
the plaintext key is not part of the key chain as specified in FCS_KYC_EXT.1.,
the plaintext key will no longer provide access to the encrypted data after initial provisioning,
the plaintext key is a key split that is combined as specified in FCS_SMC_EXT.1 and another contribution to the
split is [selection:

wrapped as specified in FCS_COP.1(5),
encrypted as specified in FCS_COP.1(7),
derived as specified in FCS_KDF_EXT.1.1 and not stored in non-volatile memory,
supplied by the enterprise management server

] ,
the plaintext key is stored on an external storage device for use as an authorization factor.,
the plaintext key is used to encrypt a key as specified in FCS_COP.1(7) or wrap a key as specified in
FCS_COP.1(5) that is already encrypted as specified in FCS_COP.1(7) or wrapped as specified in FCS_COP.1(5)

]
].

FCS_COP_EXT Cryptographic Operation
Components in this family define requirements for cryptographic operations specific to file encryption.

Component Leveling
FCS_COP_EXT.1, FAK Encryption/Decryption Support, defines requirements for how to protect a file encryption key.

Management: FCS_COP_EXT.1
The following actions could be considered for the management functions in FMT:

Configuration of the cryptographic functionality.

Audit: FCS_COP_EXT.1
There are no auditable events foreseen.

FCS_COP_EXT.1 FAK Encryption/Decryption Support
Hierarchical to: No other components.

Dependencies to: FCS_COP.1 Cryptographic Operation

FCS_COP_EXT.1.1

The FAK shall be protected in the same manner as the FEK, in accordance with FCS_COP.1(5).

FDP_AUT_EXT User Data Authentication
Components in this family define requirements for authentication of protected user data.

Component Leveling
FDP_AUT_EXT.1, Authentication of Selected User Data, requires the TSF to support data authentication and to specify the
particular data authentication method that is supported.

Management: FDP_AUT_EXT.1
There are no specific management functions identified.

Audit: FDP_AUT_EXT.1
The following actions should be auditable if FAU_GEN Security audit data generation is included in the PP/ST:

Minimal: Failed authentication attempts.
Basic: All authentication attempts.

FDP_AUT_EXT.1 Authentication of Selected User Data
Hierarchical to: No other components.

Dependencies to: FDP_AUT_EXT.2 Data Authentication Using Cryptographic Keyed-Hash Functions
FDP_AUT_EXT.3 Data Authentication Using Asymmetric Signing and Verification

FDP_AUT_EXT.1.1

The TSF shall perform authentication of the user-selected file (or set of files) and provide notification to the user if modification
had been detected.

FDP_AUT_EXT.1.2

The TSF shall implement a data authentication method based on [selection: cryptographic keyed hashing service and
verification in accordance with FDP_AUT_EXT.2, asymmetric signing and verification in accordance with FDP_AUT_EXT.3].

Component Leveling
FDP_AUT_EXT.2, Data Authentication Using cryptographic Keyed-Hash Functions, requires the TOE to implement data
authentication using a keyed hash function with a FAK as its key.

Management: FDP_AUT_EXT.2
There are no specific management functions identified.

Audit: FDP_AUT_EXT.2
There are no auditable events foreseen.

FDP_AUT_EXT.2 Data Authentication Using cryptographic Keyed-Hash Functions
Hierarchical to: No other components.

Dependencies to: FCS_CKM_EXT.5 File Authentication Key (FAK) Support
FCS_COP.1 Cryptographic Operation
FCS_COP_EXT.1 FAK Encryption/Decryption Support
FCS_RBG_EXT.1 Random Bit Generation Services

FDP_AUT_EXT.2.1

The TSF shall use a cryptographic, keyed hash function in accordance with FCS_COP.1(4) (from [AppPP]).

FDP_AUT_EXT.2.2

The TSF shall use a File Authentication Key (FAK) in accordance with FCS_COP_EXT.1 and FCS_CKM_EXT.5 as the secret
key to the keyed hash function.

FDP_AUT_EXT.2.3

The TSF shall use the entirety of the ciphertext file as the message input to the keyed hash function.

FDP_AUT_EXT.2.4

The TSF shall concatenate the output of the keyed hash function, the Message Authentication Code (MAC).

FDP_AUT_EXT.2.5

The TSF shall authenticate the encrypted file prior to decryption.

FDP_AUT_EXT.2.6

The TSF shall authenticate the data by comparing the keyed hash output of the ciphertext against the stored MAC.

FDP_AUT_EXT.2.7

The TSF shall notify the user of an unsuccessful authentication and prevent decryption of the ciphertext.

FDP_AUT_EXT.2.8

During verification, the TSF shall verify the MAC is at the end of the ciphertext file.

FDP_AUT_EXT.2.9

The FAK will be generated using a RBG that meets FCS_RBG_EXT.1 (from [AppPP]).

Component Leveling
FDP_AUT_EXT.3, Data Authentication Using Asymmetric Signing and Verification, requires the TOE to implement data
authentication using a cryptographic signature and hash.

Management: FDP_AUT_EXT.3
There are no specific management functions identified.

Audit: FDP_AUT_EXT.3
There are no auditable events foreseen.

FDP_AUT_EXT.3 Data Authentication Using Asymmetric Signing and Verification
Hierarchical to: No other components.

Dependencies to: FCS_CKM.1 Cryptographic Key Generation
FCS_COP.1 Cryptographic Operation

FDP_AUT_EXT.3.1

The TSF shall use a secure hash function in accordance with FCS_COP.1(2) (from [AppPP]) with the entire ciphertext file as
input to create a hash.

FDP_AUT_EXT.3.2

The TSF shall use a cryptographic signing function in accordance with FCS_COP.1(3) (from [AppPP]) and must use the hash
generated in accordance with FDP_AUT_EXT.3.1 as input to the signing process. Additionally, use of ephemeral key for
signing purposes is prohibited.

FDP_AUT_EXT.3.3

The TSF shall use a public and private key pair generated in accordance with FCS_CKM.1(1) (from [AppPP]) and must use
this key pair as part of the cryptographic signing process in accordance with FDP_AUT_EXT.3.2.

FDP_AUT_EXT.3.4

The TSF shall authenticate the ciphertext data prior to decryption.

FDP_AUT_EXT.3.5

The TSF shall notify the user of an unsuccessful authentication and prevent decryption of the ciphertext if such an event were
to occur.

FDP_AUT_EXT.3.6

The TSF shall append the signature to the end of the ciphertext file.

FDP_AUT_EXT.3.7

During verification, the TSF shall verify the signature is at the end of the ciphertext file.

FDP_PM_EXT Protection of Data in Power Managed States
Components in this family define requirements for the protection of data in cases where the host platform becomes locked or
unpowered.

Component Leveling
FDP_PM_EXT.1, Protection of Data in Power Managed States, requires the TOE to ensure that TSF-protected data does not
lose its protections if the host platform is placed in a locked or unpowered state.

Management: FDP_PM_EXT.1
There are no specific management functions identified.

Audit: FDP_PM_EXT.1
There are no auditable events foreseen.

FDP_PM_EXT.1 Protection of Data in Power Managed States
Hierarchical to: No other components.

Dependencies to: FDP_PRT_EXT.1 Protection of Selected User Data
FIA_AUT_EXT.1 User Authorization

FDP_PM_EXT.1.1

The TSF shall protect all data selected for encryption during the transition to the [assignment: powered-down state(s) or
locked system states for which this capability is provided] state as per FDP_PRT_EXT.1.1.

FDP_PM_EXT.1.2

On the return to a powered-on state from the state(s) indicated in FDP_PM_EXT.1.1, the TSF shall authorize the user in the
manner specified in FIA_AUT_EXT.1.1 once before any protected data are decrypted.

FDP_PM_EXT.1.3

The TSF shall destroy all key material and authentication factors stored in plaintext when transitioning to a protected state as
defined by FDP_PM_EXT.1.1.

FIA_FCT_EXT Authorization Factors
Components in this family define requirements for the use of alternative authorization factors for users to access protected
data.

Component Leveling
FIA_FCT_EXT.1, Multi-User Authorization, requires the TSF to maintain differing authorization factors for multiple users.

Management: FIA_FCT_EXT.1
There are no specific management functions identified.

Audit: FIA_FCT_EXT.1
There are no auditable events foreseen.

FIA_FCT_EXT.1 Multi-User Authorization
Hierarchical to: No other components.

Dependencies to: FIA_AUT_EXT.1 User Authorization

FIA_FCT_EXT.1.1

The TSF shall support the use of authorization factors from multiple users that result in unique KEKs.

FIA_FCT_EXT.1.2

The TSF shall support the ability of each user to have files protected by a key chain tied only to that user's credentials.

Component Leveling
FIA_FCT_EXT.2, Authorized Key Sharing, requires the TSF to support some mechanism to share a valid authorization factor
between different users.

Management: FIA_FCT_EXT.2
There are no specific management functions identified.

Audit: FIA_FCT_EXT.2
There are no auditable events foreseen.

FIA_FCT_EXT.2 Authorized Key Sharing
Hierarchical to: No other components.

Dependencies to: FCS_COP.1 Cryptographic Operation

FIA_FCT_EXT.2.1

The TSF shall support [selection: Authorized User Key sharing via key transport as specified in FCS_COP.1(6), Distribution of
a shared key from an enterprise management Server].

FCS_KDF_EXT Cryptographic Key Derivation Function
Components in this family define requirements for the implementation of cryptographic key derivation functions

Component Leveling
FCS_KDF_EXT.1, Cryptographic Key Derivation Function, requires the TSF to specify how it performs key derivation.

Management: FCS_KDF_EXT.1
The following actions could be considered for the management functions in FMT:

Configuration of the cryptographic functionality.

Audit: FCS_KDF_EXT.1
There are no auditable events foreseen.

FCS_KDF_EXT.1 Cryptographic Key Derivation Function
Hierarchical to: No other components.

Dependencies to: FCS_COP.1 Cryptographic Operation
FCS_RBG_EXT.1 Random Bit Generation Services

FCS_KDF_EXT.1.1

The TSF shall [accept [selection: a submask generated by an RBG as specified in FCS_RBG_EXT.1 (from [AppPP]), a
conditioned password, an imported submask] to derive an intermediate key, as defined in [selection:

NIST SP 800-108 [selection: KDF in Counter Mode, KDF in Feedback Mode, KDF in Double-Pipeline Iteration Mode] ,
NIST SP 800-132

] using the keyed-hash functions specified in FCS_COP.1(4) (from [AppPP]), such that the output is at least of equivalent
security strength (in number of bits) to the [FEK]].

FCS_SMC_EXT Submask Combining
Components in this family define requirements for generation of intermediate keys via submask combining.

Component Leveling
FCS_SMC_EXT.1, Submask Combining, requires the TSF to implement submask combining in a specific manner to support
the generation of intermediate keys.

Management: FCS_SMC_EXT.1
The following actions could be considered for the management functions in FMT:

Configuration of the cryptographic functionality.

Audit: FCS_SMC_EXT.1
There are no auditable events foreseen.

FCS_SMC_EXT.1 Submask Combining
Hierarchical to: No other components.

Dependencies to: FCS_COP.1 Cryptographic Operation

FCS_SMC_EXT.1.1

The TSF shall [combine submasks using the following method [selection: exclusive OR (XOR), SHA-256, SHA-384, SHA-512,
HMAC-SHA-256, HMAC-SHA-384, HMAC-SHA-512] to generate an intermediate key].

FCS_VAL_EXT Validation Remediation
Components in this family define requirements for validation of data supplied to the TOE and any consequences resulting from
failed validation attempts.

Component Leveling
FCS_VAL_EXT.1, Validation, requires the TSF to specify what data is being validated and how the validation is performed.

Management: FCS_VAL_EXT.1
There are no specific management functions identified.

Audit: FCS_VAL_EXT.1
The following actions should be auditable if FAU_GEN Security audit data generation is included in the PP/ST:

Minimal: Change to configuration of validation function behavior.

FCS_VAL_EXT.1 Validation
Hierarchical to: No other components.

Dependencies to: FCS_COP.1 Cryptographic Operation

FCS_VAL_EXT.1.1

The TSF shall perform validation of the [user] by [selection:
receiving assertion of the subject's validity from [assignment: Operational Environment component responsible for
authentication],
validating the [selection: submask, intermediate key] using the following methods: [selection:

key wrap as specified in FCS_COP.1(5),
hash the [selection: submask, intermediate key, FEK] as specified in FCS_COP.1(2) (from [AppPP]) and compare
it to a stored hash,
decrypt a known value using the [selection: submask, intermediate key, FEK] as specified in FCS_COP.1(1) (from
[AppPP]) and compare it against a stored known value

]
].

FCS_VAL_EXT.1.2

The TSF shall require validation of the [user] prior to [decrypting any FEK].

Component Leveling
FCS_VAL_EXT.2, Validation Remediation, requires the TSF to specify what the TOE’s response is in the event of a data
validation failure.

Management: FCS_VAL_EXT.2
The following actions could be considered for the management functions in FMT:

Configuration of the number of failed validation attempts required to trigger corrective behavior.
Configuration of the corrective behavior to issue in the event of an excessive number of failed validation attempts.

Audit: FCS_VAL_EXT.2
The following actions should be auditable if FAU_GEN Security audit data generation is included in the PP/ST:

Minimal: Triggering of excessive validation failure response behavior.

FCS_VAL_EXT.2 Validation Remediation
Hierarchical to: No other components.

Dependencies to: FCS_VAL_EXT.1 Validation

FCS_VAL_EXT.2.1

The TSF shall [selection:
[perform a key destruction of the FEK(s)] upon a configurable number of consecutive failed validation attempts,
institute a delay such that only [assignment: ST author specified number of attempts] can be made within a 24 hour
period,
block validation after [assignment: ST author specified number of attempts] of consecutive failed validation attempts,
require power cycle/reset the TOE after [assignment: ST author specified number of attempts] of consecutive failed
validation attempts

].

Appendix E - Key Management Description

The documentation of the product’s encryption key management should be detailed enough that, after reading, the evaluator
will thoroughly understand the product’s key management and how it meets the requirements to ensure the keys are
adequately protected. This documentation should include an essay and diagram(s). This documentation is not required to be
part of the TSS - it can be submitted as a separate document and marked as developer proprietary.

Essay:

The essay will provide the following information for all keys in the key chain:

The purpose of the key
If the key is stored in non-volatile memory
How and when the key is protected
How and when the key is derived
The strength of the key
When or if the key would be no longer needed, along with a justification
How and when the key may be shared

The essay will also describe the following topics:

A description of all authorization factors that are supported by the product and how each factor is handled, including any
conditioning and combining performed.

If validation is implemented, the process for validation shall be described, noting what value is used for validation and the
process used to perform the validation. It shall describe how this process ensures no keys in the key chain are weakened or
exposed by this process.

The authorization process that leads to the decryption of the FEK(s). This section shall detail the key chain used by the
product. It shall describe which keys are used in the protection of the FEK(s) and how they meet the encryption or derivation
requirements including the direct chain from the initial authorization to the FEK(s). It shall also include any values that add into
that key chain or interact with the key chain and the protections that ensure those values do not weaken or expose the overall
strength of the key chain.

The diagram and essay will clearly illustrate the key hierarchy to ensure that at no point the chain could be broken without a
cryptographic exhaust or all of the initial authorization values and the effective strength of the FEK(s) is maintained throughout
the key chain.

A description of the data encryption engine, its components, and details about its implementation (e.g. initialization of the
product, drivers, libraries (if applicable), logical interfaces for encryption/decryption, and how resources to be encrypted are
identified. The description should also include the data flow from the device’s host interface to the device’s persistent media
storing the data, information on those conditions in which the data bypasses the data encryption engine. The description should
be detailed enough to verify all platforms ensure that when the user enables encryption, the product encrypts all selected
resources.

The process for destroying keys when they are no longer needed by describing the storage location of all keys and the
protection of all keys stored in non-volatile memory.

Diagram:

The diagram will include all keys from the initial authorization factor(s) to the FEK(s) and any keys or values that contribute
into the chain. It must list the cryptographic strength of each key and indicate how each key along the chain is protected with
either options from key chaining requirement. The diagram should indicate the input used to derive or decrypt each key in the
chain.

A functional (block) diagram showing the main components (such as memories and processors) the initial steps needed for
the activities the TOE performs to ensure it encrypts the targeted resources when a user or administrator first provisions the
product.

Appendix F - Bibliography

Identifier Title

[CC] Common Criteria for Information Technology Security Evaluation -
Part 1: Introduction and General Model, CCMB-2017-04-001, Version 3.1 Revision 5, April 2017.
Part 2: Security Functional Components, CCMB-2017-04-002, Version 3.1 Revision 5, April 2017.
Part 3: Security Assurance Components, CCMB-2017-04-003, Version 3.1 Revision 5, April 2017.

[AppPP] Protection Profile for Application Software, Version 1.3

[FIPS140-
2]

Federal Information Processing Standard Publication (FIPS-PUB) 140-2, Security Requirements for
Cryptographic Modules, National Institute of Standards and Technology, March 19, 2007

[FIPS180-
4]

Federal Information Processing Standards Publication (FIPS-PUB) 180-4, Secure Hash Standard, March, 2012

[FIPS186-
4]

Federal Information Processing Standard Publication (FIPS-PUB) 186-4, Digital Signature Standard (DSS),
National Institute of Standards and Technology, July 2013

[FIPS197] Federal Information Processing Standards Publication (FIPS-PUB) 197, Specification for the Advanced
Encryption Standard (AES), November 26, 2001

[FIPS198-
1]

Federal Information Processing Standards Publication (FIPS-PUB) 198-1, The Keyed-Hash Message
Authentication Code (HMAC), July 2008

[NIST800-
38A]

NIST Special Publication 800-38A, Recommendation for Block Cipher Modes of Operation: Methods and
Techniques, 2001 Edition

[NIST800-
56A]

NIST Special Publication 800-56A, Recommendation for Pair-Wise Key Establishment Schemes Using Discrete
Logarithm Cryptography (Revised), March 2007

[NIST800-
56B]

NIST Special Publication 800-56B, Recommendation for Pair-Wise Key Establishment Schemes Using Integer
Factorization Cryptography, August 2009

[NIST800-
90]

NIST Special Publication 800-90, Recommendation for Random Number Generation Using Deterministic
Random Bit Generators (Revised), March 2007

[NIST800-
132]

NIST Special Publication 800-132, Recommendation for Password-Based Key Derivation, December 2010

[NIST800-
38F]

NIST Special Publication 800-38F,Recommendation for Block Cipher Modes of Operation: Methods for Key
Wrapping, December 2012

Appendix G - Acronyms

Acronym Meaning

AES Advanced Encryption Standard

CC Common Criteria

FAK File Authentication Key

FEK File Encryption Key

DRBG Deterministic Random Bit Generator

EAL Evaluation Assurance Level

ECC Elliptic Curve Cryptography

ECC CDH Elliptic Curve Cryptography Cofactor Diffie-Hellman (see NIST SP 800-56A rev 2, section
6.2.2.2)

FIPS Federal Information Processing Standards

ISSE Information System Security Engineers

IT Information Technology

KDF Key Derivation Function

KEK Key Encryption Key

PBKDF Password-Based Key Derivation Function

PIN Personnel Identification Number

PKI Public Key Infrastructure

PP Protection Profile

PUB Publication

RBG Random Bit Generator

SAR Security Assurance Requirement

SF Security Function

SFR Security Functional Requirement

ST Security Target

TOE Target of Evaluation

TSF TOE Security Functionality

TSFI TSF Interface

TSS TOE Summary Specification

	PP-Module for File Encryption
	Revision History
	Contents

	1 Introduction
	1.1 Overview
	1.2 Terms
	1.2.1 Common Criteria Terms
	1.2.2 Technical Terms

	1.3 Compliant Targets of Evaluation
	1.3.1 TOE Boundary

	1.4 Use Cases

	2 Conformance Claims
	3 Security Problem Description
	3.1 Threats
	3.2 Assumptions
	3.3 Organizational Security Policies

	4 Security Objectives
	4.1 Security Objectives for the TOE
	4.2 Security Objectives for the Operational Environment
	4.3 Security Objectives Rationale

	5 Security Requirements
	5.1 App PP Security Functional Requirements Direction
	5.1.1 Modified SFRs
	5.2 TOE Security Functional Requirements
	5.2.1 Cryptographic Support (FCS)
	FCS_CKM_EXT.2 File Encryption Key (FEK) Generation
	FCS_CKM_EXT.4 Cryptographic Key Destruction
	KMD
	FCS_IV_EXT.1 Initialization Vector Generation
	FCS_KYC_EXT.1 Key Chaining and Key Storage
	KMD
	FCS_VAL_EXT.1 Validation

	5.2.2 User Data Protection (FDP)
	FDP_PRT_EXT.1 Protection of Selected User Data
	FDP_PRT_EXT.2 Destruction of Plaintext Data

	5.2.3 Identification and Authentication (FIA)
	FIA_AUT_EXT.1 Subject Authorization

	5.2.4 Security Management (FMT)
	FMT_SMF.1(2) Specification of File Encryption Management Functions

	5.2.5 Protection of the TSF (FPT)
	FPT_KYP_EXT.1 Protection of Keys and Key Material
	KMD

	6 Consistency Rationale
	6.1 Application Software Protection Profile
	6.1.1 Consistency of TOE Type
	6.1.2 Consistency of Security Problem Definition
	6.1.3 Consistency of Objectives
	6.1.4 Consistency of Requirements

	Appendix A - Optional SFRs
	FCS_CKM_EXT.5 File Authentication Key (FAK) Support
	FCS_COP_EXT.1 FAK Encryption/Decryption Support
	FDP_AUT_EXT.1 Authentication of Selected User Data
	FDP_AUT_EXT.2 Data Authentication Using cryptographic Keyed-Hash Functions
	FDP_AUT_EXT.3 Data Authentication Using Asymmetric Signing and Verification
	FDP_PM_EXT.1 Protection of Data in Power Managed States
	KMD
	FDP_PRT_EXT.3 Protection of Third-Party Data
	FIA_FCT_EXT.1 Multi-User Authorization
	FIA_FCT_EXT.2 Authorized Key Sharing

	Appendix B - Selection-based SFRs
	FCS_CKM_EXT.3 Key Encrypting Key (KEK) Support
	FCS_CKM_EXT.6 Cryptographic Password/Passphrase Conditioning
	FCS_COP.1(5) Cryptographic operation (Key Wrapping)
	KMD
	FCS_COP.1(6) Cryptographic operation (Key Transport)
	FCS_COP.1(7) Cryptographic operation (Key Encryption)
	Requirement met by the platform
	Requirement met by the TOE
	FCS_KDF_EXT.1 Cryptographic Key Derivation Function
	FCS_SMC_EXT.1 Submask Combining
	FCS_VAL_EXT.2 Validation Remediation

	Appendix C - Objective SFRs
	Appendix D - Extended Component Definitions
	D.1 Background and Scope
	D.2 Extended Component Definitions
	FCS_CKM_EXT Cryptographic Key Management
	Component Leveling
	Management: FCS_CKM_EXT.2
	Audit: FCS_CKM_EXT.2
	FCS_CKM_EXT.2 File Encryption Key (FEK) Generation
	FCS_CKM_EXT.2.1
	FCS_CKM_EXT.2.2
	Component Leveling
	Management: FCS_CKM_EXT.4
	Audit: FCS_CKM_EXT.4
	FCS_CKM_EXT.4 Cryptographic Key Destruction
	FCS_CKM_EXT.4.1
	FCS_CKM_EXT.4.2
	Component Leveling
	Management: FCS_CKM_EXT.5
	Audit: FCS_CKM_EXT.5
	FCS_CKM_EXT.5 File Authentication Key (FAK) Support
	FCS_CKM_EXT.5.1
	FCS_CKM_EXT.5.2
	FCS_CKM_EXT.5.3
	FCS_CKM_EXT.5.4
	FCS_CKM_EXT.5.5
	Component Leveling
	Management: FCS_CKM_EXT.3
	Audit: FCS_CKM_EXT.3
	FCS_CKM_EXT.3 Key Encrypting Key (KEK) Support
	FCS_CKM_EXT.3.1
	Component Leveling
	Management: FCS_CKM_EXT.6
	Audit: FCS_CKM_EXT.6
	FCS_CKM_EXT.6 Cryptographic Password/Passphrase Conditioning
	FCS_CKM_EXT.6.1
	FCS_CKM_EXT.6.2
	FCS_CKM_EXT.6.3
	FCS_CKM_EXT.6.4
	FCS_CKM_EXT.6.5
	FCS_IV_EXT Initialization Vector Generation
	Component Leveling
	Management: FCS_IV_EXT.1
	Audit: FCS_IV_EXT.1
	FCS_IV_EXT.1 Initialization Vector Generation
	FCS_IV_EXT.1.1
	FCS_KYC_EXT Key Chaining and Key Storage
	Component Leveling
	Management: FCS_KYC_EXT.1
	Audit: FCS_KYC_EXT.1
	FCS_KYC_EXT.1 Key Chaining and Key Storage
	FCS_KYC_EXT.1.1
	FCS_VAL_EXT Validation
	Component Leveling
	Management: FCS_VAL_EXT.1
	Audit: FCS_VAL_EXT.1
	FCS_VAL_EXT.1 Validation
	FCS_VAL_EXT.1.1
	FCS_VAL_EXT.1.2
	Component Leveling
	Management: FCS_VAL_EXT.2
	Audit: FCS_VAL_EXT.2
	FCS_VAL_EXT.2 Validation Remediation
	FCS_VAL_EXT.2.1
	FDP_PRT_EXT Protection of Selected User Data
	Component Leveling
	Management: FDP_PRT_EXT.1
	Audit: FDP_PRT_EXT.1
	FDP_PRT_EXT.1 Protection of Selected User Data
	FDP_PRT_EXT.1.1
	FDP_PRT_EXT.1.2
	Component Leveling
	Management: FDP_PRT_EXT.2
	Audit: FDP_PRT_EXT.2
	FDP_PRT_EXT.2 Destruction of Plaintext Data
	FDP_PRT_EXT.2.1
	Component Leveling
	Management: FDP_PRT_EXT.3
	Audit: FDP_PRT_EXT.3
	FDP_PRT_EXT.3 Protection of Third-Party Data
	FDP_PRT_EXT.3.1
	FIA_AUT_EXT Authorization
	Component Leveling
	Management: FIA_AUT_EXT.1
	Audit: FIA_AUT_EXT.1
	FIA_AUT_EXT.1 Subject Authorization
	FIA_AUT_EXT.1.1
	FPT_KYP_EXT Protection of Key and Key Material
	Component Leveling
	Management: FPT_KYP_EXT.1
	Audit: FPT_KYP_EXT.1
	FPT_KYP_EXT.1 Protection of Keys and Key Material
	FPT_KYP_EXT.1.1
	FCS_COP_EXT Cryptographic Operation
	Component Leveling
	Management: FCS_COP_EXT.1
	Audit: FCS_COP_EXT.1
	FCS_COP_EXT.1 FAK Encryption/Decryption Support
	FCS_COP_EXT.1.1
	FDP_AUT_EXT User Data Authentication
	Component Leveling
	Management: FDP_AUT_EXT.1
	Audit: FDP_AUT_EXT.1
	FDP_AUT_EXT.1 Authentication of Selected User Data
	FDP_AUT_EXT.1.1
	FDP_AUT_EXT.1.2
	Component Leveling
	Management: FDP_AUT_EXT.2
	Audit: FDP_AUT_EXT.2
	FDP_AUT_EXT.2 Data Authentication Using cryptographic Keyed-Hash Functions
	FDP_AUT_EXT.2.1
	FDP_AUT_EXT.2.2
	FDP_AUT_EXT.2.3
	FDP_AUT_EXT.2.4
	FDP_AUT_EXT.2.5
	FDP_AUT_EXT.2.6
	FDP_AUT_EXT.2.7
	FDP_AUT_EXT.2.8
	FDP_AUT_EXT.2.9
	Component Leveling
	Management: FDP_AUT_EXT.3
	Audit: FDP_AUT_EXT.3
	FDP_AUT_EXT.3 Data Authentication Using Asymmetric Signing and Verification
	FDP_AUT_EXT.3.1
	FDP_AUT_EXT.3.2
	FDP_AUT_EXT.3.3
	FDP_AUT_EXT.3.4
	FDP_AUT_EXT.3.5
	FDP_AUT_EXT.3.6
	FDP_AUT_EXT.3.7
	FDP_PM_EXT Protection of Data in Power Managed States
	Component Leveling
	Management: FDP_PM_EXT.1
	Audit: FDP_PM_EXT.1
	FDP_PM_EXT.1 Protection of Data in Power Managed States
	FDP_PM_EXT.1.1
	FDP_PM_EXT.1.2
	FDP_PM_EXT.1.3
	FIA_FCT_EXT Authorization Factors
	Component Leveling
	Management: FIA_FCT_EXT.1
	Audit: FIA_FCT_EXT.1
	FIA_FCT_EXT.1 Multi-User Authorization
	FIA_FCT_EXT.1.1
	FIA_FCT_EXT.1.2
	Component Leveling
	Management: FIA_FCT_EXT.2
	Audit: FIA_FCT_EXT.2
	FIA_FCT_EXT.2 Authorized Key Sharing
	FIA_FCT_EXT.2.1
	FCS_KDF_EXT Cryptographic Key Derivation Function
	Component Leveling
	Management: FCS_KDF_EXT.1
	Audit: FCS_KDF_EXT.1
	FCS_KDF_EXT.1 Cryptographic Key Derivation Function
	FCS_KDF_EXT.1.1
	FCS_SMC_EXT Submask Combining
	Component Leveling
	Management: FCS_SMC_EXT.1
	Audit: FCS_SMC_EXT.1
	FCS_SMC_EXT.1 Submask Combining
	FCS_SMC_EXT.1.1
	FCS_VAL_EXT Validation Remediation
	Component Leveling
	Management: FCS_VAL_EXT.1
	Audit: FCS_VAL_EXT.1
	FCS_VAL_EXT.1 Validation
	FCS_VAL_EXT.1.1
	FCS_VAL_EXT.1.2
	Component Leveling
	Management: FCS_VAL_EXT.2
	Audit: FCS_VAL_EXT.2
	FCS_VAL_EXT.2 Validation Remediation
	FCS_VAL_EXT.2.1

	Appendix E - Key Management Description
	Appendix F - Bibliography
	Appendix G - Acronyms

