
Supporting	Document
Mandatory	Technical	Document

collaborative	Protection	Profile	for	Dedicated	Security	Component
Version:	1.0
2020-09-10

National	Information	Assurance	Partnership

Foreword
This	is	a	Supporting	Document	(SD),	intended	to	complement	the	Common	Criteria	version	3	and	the
associated	Common	Evaluation	Methodology	for	Information	Technology	Security	Evaluation.

SDs	may	be	“Guidance	Documents”,	that	highlight	specific	approaches	and	application	of	the	standard	to
areas	where	no	mutual	recognition	of	its	application	is	required,	and	as	such,	are	not	of	normative	nature,	or
“Mandatory	Technical	Documents”,	whose	application	is	mandatory	for	evaluations	whose	scope	is	covered	by
that	of	the	SD.	The	usage	of	the	latter	class	is	not	only	mandatory,	but	certificates	issued	as	a	result	of	their
application	are	recognized	under	the	CCRA.

Technical	Editor:
National	Information	Assurance	Partnership	(NIAP)

Document	history:

Version Date Comment

1.0 2020-09-10 First	published	release	version.

1.0x 2021-04-06 Start	of	first	XML	version.

General	Purpose:
The	purpose	of	this	SD	is	to	define	evaluation	methods	for	the	functional	behavior	of	Dedicated	Security
Components	products.

Acknowledgements:
This	SD	was	developed	with	support	from	NIAP	Dedicated	Security	Components	Technical	Community
members,	with	representatives	from	industry,	government	agencies,	Common	Criteria	Test	Laboratories,	and
members	of	academia.

Table	of	Contents
1 Introduction
1.1 Technology	Area	and	Scope	of	Supporting	Document
1.2 Structure	of	the	Document
1.3 Terms
1.3.1 Common	Criteria	Terms
1.3.2 Technical	Terms

2 Evaluation	Activities	for	SFRs
2.1 TOE	SFR	Evaluation	Activities
2.1.1 Cryptographic	Support	(FCS)
2.1.2 User	Data	Protection
2.1.3 Identification	and	Authentication
2.1.4 Security	Management	(FMT)
2.1.5 Protection	of	the	TSF
2.1.6 Resource	Utilization	(FRU)
2.2 Evaluation	Activities	for	Optional	SFRs
2.2.1 Cryptographic	Support	(FCS)
2.2.2 User	Data	Protection
2.2.3 Identification	and	Authentication
2.2.4 Security	Management	(FMT)

file:///home/runner/work/dsc/dsc/commoncriteria.github.io/pp/dsc/dsc-sd.html?expand=on#introduction
file:///home/runner/work/dsc/dsc/commoncriteria.github.io/pp/dsc/dsc-sd.html?expand=on#scope
file:///home/runner/work/dsc/dsc/commoncriteria.github.io/pp/dsc/dsc-sd.html?expand=on#structure
file:///home/runner/work/dsc/dsc/commoncriteria.github.io/pp/dsc/dsc-sd.html?expand=on#glossary
file:///home/runner/work/dsc/dsc/commoncriteria.github.io/pp/dsc/dsc-sd.html?expand=on#cc-terms
file:///home/runner/work/dsc/dsc/commoncriteria.github.io/pp/dsc/dsc-sd.html?expand=on#tech-terms
file:///home/runner/work/dsc/dsc/commoncriteria.github.io/pp/dsc/dsc-sd.html?expand=on#sfr
file:///home/runner/work/dsc/dsc/commoncriteria.github.io/pp/dsc/dsc-sd.html?expand=on#man-sfrs
file:///home/runner/work/dsc/dsc/commoncriteria.github.io/pp/dsc/dsc-sd.html?expand=on#fcs
file:///home/runner/work/dsc/dsc/commoncriteria.github.io/pp/dsc/dsc-sd.html?expand=on#fdp
file:///home/runner/work/dsc/dsc/commoncriteria.github.io/pp/dsc/dsc-sd.html?expand=on#fia
file:///home/runner/work/dsc/dsc/commoncriteria.github.io/pp/dsc/dsc-sd.html?expand=on#fmt
file:///home/runner/work/dsc/dsc/commoncriteria.github.io/pp/dsc/dsc-sd.html?expand=on#fpt
file:///home/runner/work/dsc/dsc/commoncriteria.github.io/pp/dsc/dsc-sd.html?expand=on#fru
file:///home/runner/work/dsc/dsc/commoncriteria.github.io/pp/dsc/dsc-sd.html?expand=on#opt-sfrs
file:///home/runner/work/dsc/dsc/commoncriteria.github.io/pp/dsc/dsc-sd.html?expand=on#fcs
file:///home/runner/work/dsc/dsc/commoncriteria.github.io/pp/dsc/dsc-sd.html?expand=on#fdp
file:///home/runner/work/dsc/dsc/commoncriteria.github.io/pp/dsc/dsc-sd.html?expand=on#fia
file:///home/runner/work/dsc/dsc/commoncriteria.github.io/pp/dsc/dsc-sd.html?expand=on#fmt

2.2.5 Protection	of	the	TSF
2.2.6 Resource	Utilization	(FRU)
2.3 Evaluation	Activities	for	Selection-Based	SFRs
2.3.1 User	Data	Protection
2.3.2 Identification	and	Authentication
2.3.3 Protection	of	the	TSF
2.3.4 Trusted	Paths/Channels
2.4 Evaluation	Activities	for	Objective	SFRs
3 Evaluation	Activities	for	SARs
3.1 Class	ADV:	Development
3.2 Class	AGD:	Guidance	Documentation
3.3 Class	ALC:	Life-cycle	Support
3.4 Class	ATE:	Tests
3.5 Class	AVA:	Vulnerability	Assessment
4 Required	Supplementary	Information
Appendix	A	-	 References

1	Introduction
1.1	Technology	Area	and	Scope	of	Supporting	Document
The	scope	of	the	collaborative	Protection	Profile	for	Dedicated	Security	Component	is	to	describe	the	security
functionality	of	Dedicated	Security	Components	products	in	terms	of	[CC]	and	to	define	functional	and
assurance	requirements	for	them.

Although	Evaluation	Activities	are	defined	mainly	for	the	evaluators	to	follow,	in	general	they	also	help
developers	to	prepare	for	evaluation	by	identifying	specific	requirements	for	their	TOE.	The	specific
requirements	in	Evaluation	Activities	may	in	some	cases	clarify	the	meaning	of	Security	Functional
Requirements	(SFR),	and	may	identify	particular	requirements	for	the	content	of	Security	Targets	(ST)
(especially	the	TOE	Summary	Specification),	user	guidance	documentation,	and	possibly	supplementary
information	(e.g.	for	entropy	analysis	or	cryptographic	key	management	architecture).

1.2	Structure	of	the	Document
Evaluation	Activities	can	be	defined	for	both	SFRs	and	Security	Assurance	Requirements	(SAR),	which	are
themselves	defined	in	separate	sections	of	the	SD.

If	any	Evaluation	Activity	cannot	be	successfully	completed	in	an	evaluation,	then	the	overall	verdict	for	the
evaluation	is	a	'fail'.	In	rare	cases	there	may	be	acceptable	reasons	why	an	Evaluation	Activity	may	be
modified	or	deemed	not	applicable	for	a	particular	TOE,	but	this	must	be	approved	by	the	Certification	Body
for	the	evaluation.

In	general,	if	all	Evaluation	Activities	(for	both	SFRs	and	SARs)	are	successfully	completed	in	an	evaluation
then	it	would	be	expected	that	the	overall	verdict	for	the	evaluation	is	a	‘pass’.	To	reach	a	‘fail’	verdict	when
the	Evaluation	Activities	have	been	successfully	completed	would	require	a	specific	justification	from	the
evaluator	as	to	why	the	Evaluation	Activities	were	not	sufficient	for	that	TOE.

Similarly,	at	the	more	granular	level	of	assurance	components,	if	the	Evaluation	Activities	for	an	assurance
component	and	all	of	its	related	SFR	Evaluation	Activities	are	successfully	completed	in	an	evaluation	then	it
would	be	expected	that	the	verdict	for	the	assurance	component	is	a	‘pass’.	To	reach	a	‘fail’	verdict	for	the
assurance	component	when	these	Evaluation	Activities	have	been	successfully	completed	would	require	a
specific	justification	from	the	evaluator	as	to	why	the	Evaluation	Activities	were	not	sufficient	for	that	TOE.

1.3	Terms
The	following	sections	list	Common	Criteria	and	technology	terms	used	in	this	document.

1.3.1	Common	Criteria	Terms

Assurance Grounds	for	confidence	that	a	TOE	meets	the	SFRs	[CC].

Base
Protection
Profile	(Base-
PP)

Protection	Profile	used	as	a	basis	to	build	a	PP-Configuration.

Common
Criteria	(CC)

Common	Criteria	for	Information	Technology	Security	Evaluation	(International	Standard
ISO/IEC	15408).

Common
Criteria
Testing
Laboratory

Within	the	context	of	the	Common	Criteria	Evaluation	and	Validation	Scheme	(CCEVS),	an
IT	security	evaluation	facility,	accredited	by	the	National	Voluntary	Laboratory
Accreditation	Program	(NVLAP)	and	approved	by	the	NIAP	Validation	Body	to	conduct
Common	Criteria-based	evaluations.

Common
Evaluation
Methodology
(CEM)

Common	Evaluation	Methodology	for	Information	Technology	Security	Evaluation.

file:///home/runner/work/dsc/dsc/commoncriteria.github.io/pp/dsc/dsc-sd.html?expand=on#fpt
file:///home/runner/work/dsc/dsc/commoncriteria.github.io/pp/dsc/dsc-sd.html?expand=on#fru
file:///home/runner/work/dsc/dsc/commoncriteria.github.io/pp/dsc/dsc-sd.html?expand=on#sel-sfrs
file:///home/runner/work/dsc/dsc/commoncriteria.github.io/pp/dsc/dsc-sd.html?expand=on#fdp
file:///home/runner/work/dsc/dsc/commoncriteria.github.io/pp/dsc/dsc-sd.html?expand=on#fia
file:///home/runner/work/dsc/dsc/commoncriteria.github.io/pp/dsc/dsc-sd.html?expand=on#fpt
file:///home/runner/work/dsc/dsc/commoncriteria.github.io/pp/dsc/dsc-sd.html?expand=on#ftp
file:///home/runner/work/dsc/dsc/commoncriteria.github.io/pp/dsc/dsc-sd.html?expand=on#obj-sfrs
file:///home/runner/work/dsc/dsc/commoncriteria.github.io/pp/dsc/dsc-sd.html?expand=on#sar_aas
file:///home/runner/work/dsc/dsc/commoncriteria.github.io/pp/dsc/dsc-sd.html?expand=on#adv
file:///home/runner/work/dsc/dsc/commoncriteria.github.io/pp/dsc/dsc-sd.html?expand=on#agd
file:///home/runner/work/dsc/dsc/commoncriteria.github.io/pp/dsc/dsc-sd.html?expand=on#alc
file:///home/runner/work/dsc/dsc/commoncriteria.github.io/pp/dsc/dsc-sd.html?expand=on#ate
file:///home/runner/work/dsc/dsc/commoncriteria.github.io/pp/dsc/dsc-sd.html?expand=on#ava
file:///home/runner/work/dsc/dsc/commoncriteria.github.io/pp/dsc/dsc-sd.html?expand=on#sup-info
file:///home/runner/work/dsc/dsc/commoncriteria.github.io/pp/dsc/dsc-sd.html?expand=on#biblio
file:///home/runner/work/dsc/dsc/commoncriteria.github.io/pp/dsc/dsc-sd.html?expand=on#bibCC

Distributed
TOE A	TOE	composed	of	multiple	components	operating	as	a	logical	whole.

Operational
Environment
(OE)

Hardware	and	software	that	are	outside	the	TOE	boundary	that	support	the	TOE
functionality	and	security	policy.

Protection
Profile	(PP) An	implementation-independent	set	of	security	requirements	for	a	category	of	products.

Protection
Profile
Configuration
(PP-
Configuration)

A	comprehensive	set	of	security	requirements	for	a	product	type	that	consists	of	at	least
one	Base-PP	and	at	least	one	PP-Module.

Protection
Profile	Module
(PP-Module)

An	implementation-independent	statement	of	security	needs	for	a	TOE	type	complementary
to	one	or	more	Base	Protection	Profiles.

Security
Assurance
Requirement
(SAR)

A	requirement	to	assure	the	security	of	the	TOE.

Security
Functional
Requirement
(SFR)

A	requirement	for	security	enforcement	by	the	TOE.

Security
Target	(ST) A	set	of	implementation-dependent	security	requirements	for	a	specific	product.

TOE	Security
Functionality
(TSF)

The	security	functionality	of	the	product	under	evaluation.

TOE	Summary
Specification
(TSS)

A	description	of	how	a	TOE	satisfies	the	SFRs	in	an	ST.

Target	of
Evaluation
(TOE)

The	product	under	evaluation.

1.3.2	Technical	Terms

Address	Space
Layout
Randomization
(ASLR)

An	anti-exploitation	feature	which	loads	memory	mappings	into	unpredictable	locations.
ASLR	makes	it	more	difficult	for	an	attacker	to	redirect	control	to	code	that	they	have
introduced	into	the	address	space	of	a	process.

Administrator

An	administrator	is	responsible	for	management	activities,	including	setting	policies	that
are	applied	by	the	enterprise	on	the	operating	system.	This	administrator	could	be	acting
remotely	through	a	management	server,	from	which	the	system	receives	configuration
policies.	An	administrator	can	enforce	settings	on	the	system	which	cannot	be	overridden
by	non-administrator	users.

Application
(app)

Software	that	runs	on	a	platform	and	performs	tasks	on	behalf	of	the	user	or	owner	of	the
platform,	as	well	as	its	supporting	documentation.

Application
Programming
Interface	(API)

A	specification	of	routines,	data	structures,	object	classes,	and	variables	that	allows	an
application	to	make	use	of	services	provided	by	another	software	component,	such	as	a
library.	APIs	are	often	provided	for	a	set	of	libraries	included	with	the	platform.

Credential Data	that	establishes	the	identity	of	a	user,	e.g.	a	cryptographic	key	or	password.

Critical
Security
Parameters
(CSP)

Information	that	is	either	user	or	system	defined	and	is	used	to	operate	a	cryptographic
module	in	processing	encryption	functions	including	cryptographic	keys	and	authentication
data,	such	as	passwords,	the	disclosure	or	modification	of	which	can	compromise	the
security	of	a	cryptographic	module	or	the	security	of	the	information	protected	by	the
module.

DAR
Protection

Countermeasures	that	prevent	attackers,	even	those	with	physical	access,	from	extracting
data	from	non-volatile	storage.	Common	techniques	include	data	encryption	and	wiping.

Data
Execution
Prevention
(DEP)

An	anti-exploitation	feature	of	modern	operating	systems	executing	on	modern	computer
hardware,	which	enforces	a	non-execute	permission	on	pages	of	memory.	DEP	prevents
pages	of	memory	from	containing	both	data	and	instructions,	which	makes	it	more	difficult
for	an	attacker	to	introduce	and	execute	code.

Developer
An	entity	that	writes	OS	software.	For	the	purposes	of	this	document,	vendors	and
developers	are	the	same.

General
Purpose
Operating
System

A	class	of	OSes	designed	to	support	a	wide-variety	of	workloads	consisting	of	many
concurrent	applications	or	services.	Typical	characteristics	for	OSes	in	this	class	include
support	for	third-party	applications,	support	for	multiple	users,	and	security	separation
between	users	and	their	respective	resources.	General	Purpose	Operating	Systems	also
lack	the	real-time	constraint	that	defines	Real	Time	Operating	Systems	(RTOS).	RTOSes
typically	power	routers,	switches,	and	embedded	devices.

Host-based
Firewall

A	software-based	firewall	implementation	running	on	the	OS	for	filtering	inbound	and
outbound	network	traffic	to	and	from	processes	running	on	the	OS.

Operating
System	(OS)

Software	that	manages	physical	and	logical	resources	and	provides	services	for
applications.	The	terms	TOE	and	OS	are	interchangeable	in	this	document.

Personally
Identifiable
Information
(PII)

Any	information	about	an	individual	maintained	by	an	agency,	including,	but	not	limited	to,
education,	financial	transactions,	medical	history,	and	criminal	or	employment	history	and
information	which	can	be	used	to	distinguish	or	trace	an	individual's	identity,	such	as	their
name,	social	security	number,	date	and	place	of	birth,	mother's	maiden	name,	biometric
records,	etc.,	including	any	other	personal	information	which	is	linked	or	linkable	to	an
individual.[OMB]

Sensitive	Data
Sensitive	data	may	include	all	user	or	enterprise	data	or	may	be	specific	application	data
such	as	PII,	emails,	messaging,	documents,	calendar	items,	and	contacts.	Sensitive	data
must	minimally	include	credentials	and	keys.	Sensitive	data	shall	be	identified	in	the	OS's
TSS	by	the	ST	author.

User
A	user	is	subject	to	configuration	policies	applied	to	the	operating	system	by
administrators.	On	some	systems	under	certain	configurations,	a	normal	user	can
temporarily	elevate	privileges	to	that	of	an	administrator.	At	that	time,	such	a	user	should
be	considered	an	administrator.

Virtual
Machine	(VM) Blah	Blah	Blah

2	Evaluation	Activities	for	SFRs
The	EAs	presented	in	this	section	capture	the	actions	the	evaluator	performs	to	address	technology	specific
aspects	covering	specific	SARs	(e.g.	ASE_TSS.1,	ADV_FSP.1,	AGD_OPE.1,	and	ATE_IND.1)	–	this	is	in	addition
to	the	CEM	work	units	that	are	performed	in	Section	3	Evaluation	Activities	for	SARs.

Regarding	design	descriptions	(designated	by	the	subsections	labelled	TSS,	as	well	as	any	required
supplementary	material	that	may	be	treated	as	proprietary),	the	evaluator	must	ensure	there	is	specific
information	that	satisfies	the	EA.	For	findings	regarding	the	TSS	section,	the	evaluator’s	verdicts	will	be
associated	with	the	CEM	work	unit	ASE_TSS.1-1.	Evaluator	verdicts	associated	with	the	supplementary
evidence	will	also	be	associated	with	ASE_TSS.1-1,	since	the	requirement	to	provide	such	evidence	is
specified	in	ASE	in	the	PP.

For	ensuring	the	guidance	documentation	provides	sufficient	information	for	the	administrators/users	as	it
pertains	to	SFRs,	the	evaluator’s	verdicts	will	be	associated	with	CEM	work	units	ADV_FSP.1-7,	AGD_OPE.1-
4,	and	AGD_OPE.1-5.

Finally,	the	subsection	labelled	Tests	is	where	the	authors	have	determined	that	testing	of	the	product	in	the
context	of	the	associated	SFR	is	necessary.	While	the	evaluator	is	expected	to	develop	tests,	there	may	be
instances	where	it	is	more	practical	for	the	developer	to	construct	tests,	or	where	the	developer	may	have
existing	tests.	Therefore,	it	is	acceptable	for	the	evaluator	to	witness	developer-generated	tests	in	lieu	of
executing	the	tests.	In	this	case,	the	evaluator	must	ensure	the	developer’s	tests	are	executing	both	in	the
manner	declared	by	the	developer	and	as	mandated	by	the	EA.	The	CEM	work	units	that	are	associated	with
the	EAs	specified	in	this	section	are:	ATE_IND.1-3,	ATE_IND.1-4,	ATE_IND.1-5,	ATE_IND.1-6,	and	ATE_IND.1-
7.

2.1	TOE	SFR	Evaluation	Activities
2.1.1	Cryptographic	Support	(FCS)

FCS_CKM.1	Cryptographic	Key	Generation

TSS
The	evaluator	shall	examine	the	TSS	to	verify	that	it	describes	how	the	TOE	obtains	a	cryptographic	key
through	importation	of	keys	from	external	sources	as	specified	in	FDP_ITC_EXT.1	and	FDP_ITC_EXT.2.	The
evaluator	shall	also	examine	the	TSS	to	determine	whether	it	describes	any	supported	asymmetric	or
symmetric	key	generation	functionality	consistent	with	the	claims	made	in	FCS_CKM.1.1.
Guidance
The	evaluator	shall	verify	that	the	guidance	instructs	the	administrator	how	to	configure	the	TOE	to	use	the
selected	key	types	for	all	uses	identified	in	the	ST.
KMD
The	evaluator	shall	confirm	that	the	KMD	describes:

The	parsing	interface	and	how	the	TSF	imports	keys	for	internal	use
The	asymmetric	key	generation	interfaces	and	how	the	TSF	internally	creates	asymmetric	keys,	if

file:///home/runner/work/dsc/dsc/commoncriteria.github.io/pp/dsc/dsc-sd.html?expand=on#bibOMB
file:///home/runner/work/dsc/dsc/commoncriteria.github.io/pp/dsc/dsc-sd.html?expand=on#sar_aas

claimed
The	symmetric	key	generation	interfaces	and	how	the	TSF	internally	creates	symmetric	keys,	if	claimed

If	the	TOE	uses	the	generated	key	in	a	key	chain/hierarchy	then	the	KMD	shall	describe	how	the	key	is	used
as	part	of	the	key	chain/hierarchy.
Tests
Testing	for	this	function	is	performed	in	conjunction	with	FDP_ITC_EXT.1	and	FDP_ITC_EXT.2.	If	asymmetric
or	symmetric	key	generation	functionality	is	claimed,	testing	for	this	function	is	also	performed	in	conjunction
with	FCS_CKM.1/AK	or	FCS_CKM.1/SK.

FCS_CKM.1/AK	Cryptographic	Key	Generation	(Asymmetric	Keys)

TSS
The	evaluator	shall	examine	the	TSS	to	verify	that	it	describes	how	the	TOE	generates	an	asymmetric	key
based	on	the	methods	selected	from	cPP	Table	13:	“Supported	Methods	for	Asymmetric	Key	Generation”.	The
evaluator	shall	examine	the	TSS	to	verify	that	it	describes	how	the	TOE	invokes	the	methods	selected	in	the
ST	from	the	same	table.	The	evaluator	shall	examine	the	TSS	to	verify	that	it	identifies	the	usage	for	each	row
identifier	(key	type,	key	size,	and	list	of	standards)	selected	in	the	ST.
Guidance
The	evaluator	shall	verify	that	the	AGD	guidance	instructs	the	administrator	how	to	configure	the	TOE	to	use
the	selected	key	types	for	all	uses	identified	in	the	ST.
KMD
If	the	TOE	uses	the	generated	key	in	a	key	chain/hierarchy	then	the	evaluator	shall	confirm	that	the	KMD
describes:

If	AK1	is	selected,	then	the	KMD	describes	which	methods	for	generating	p	and	q	are	used
How	the	key	is	used	as	part	of	the	key	chain/hierarchy.

Tests
The	following	tests	require	the	developer	to	provide	access	to	a	test	platform	that	provides	the	evaluator	with
tools	that	are	typically	not	found	on	factory	products.

AK1:	RSA	Key	Generation
The	below	tests	are	derived	from	The	186-4	RSA	Validation	System	(RSA2VS),	Updated	8	July	2014,	Section
6.2,	from	the	National	Institute	of	Standards	and	Technology.

The	evaluator	shall	verify	the	implementation	of	RSA	Key	Generation	by	the	TOE	using	the	Key	Generation
test.	This	test	verifies	the	ability	of	the	TSF	to	correctly	produce	values	for	the	key	components	including	the
public	verification	exponent	e,	the	private	prime	factors	p	and	q,	the	public	modulus	n	and	the	calculation	of
the	private	signature	exponent	d.

FIPS	186-4	Key	Pair	generation	specifies	5	methods	for	generating	the	primes	p	and	q.

These	are:

1.	 Random	Primes:
Provable	primes
Probable	primes

2.	 Primes	with	Conditions:
Primes	p1,	p2,	q1,	q2,	p	and	q	shall	all	be	provable	primes.
Primes	p1,	p2,	q1,	and	q2	shall	be	provable	primes	and	p	and	q	shall	be	probable	primes
Primes	p1,	p2,	q1,	q2,	p	and	q	shall	all	be	probable	primes.

To	test	the	key	generation	method	for	the	Random	Provable	primes	method	and	for	all	the	Primes	with
Conditions	methods,	the	evaluator	must	seed	the	TSF	key	generation	routine	with	sufficient	data	to
deterministically	generate	the	RSA	key	pair.

For	each	key	length	supported,	the	evaluator	shall	have	the	TSF	generate	25	key	pairs.	The	evaluator	shall
verify	the	correctness	of	the	TSF’s	implementation	by	comparing	values	generated	by	the	TSF	with	those
generated	by	a	known	good	implementation	using	the	same	input	parameters.

If	the	TOE	generates	Random	Probable	Primes	then	if	possible,	the	Random	Probable	primes	method	should
also	be	verified	against	a	known	good	implementation	as	described	above.	If	verification	against	a	known
good	implementation	is	not	possible,	the	evaluator	shall	have	the	TSF	generate	25	key	pairs	for	each
supported	key	length	nlen	and	verify	that	all	of	the	following	are	true:

n	=	p*q
p	and	q	are	probably	prime	according	to	Miller-Rabin	tests	with	error	probability	<2^(-125)
2^16	<	e	<	2^256	and	e	is	an	odd	integer
GCD(p-1,e)	=	1
GCD(q-1,e)	=	1
|p-q|	>	2^(nlen/2	-	100)
p	>=	squareroot(2)*(2^(nlen/2	-1))
q	>=	squareroot(2)*(2^(nlen/2	-1))
2^(nlen/2)	<	d	<	LCM(p-1,q-1)
e*d	=	1	mod	LCM(p-1,q-1)

AK2	&	AK3:	ECC	Key	Generation	with	NIST	and	Brainpool	Curves

These	tests	are	derived	from	The	FIPS	186-4	Elliptic	Curve	Digital	Signature	Algorithm	Validation	System
(ECDSA2VS),	Updated	18	Mar	2014,	Section	6.

ECC	Key	Generation	Test

For	each	selected	curve,	and	for	each	key	pair	generation	method	as	described	in	FIPS	186-4,	section	B.4,	the
evaluator	shall	require	the	implementation	under	test	to	generate	10	private/public	key	pairs	(d,	Q).	The
private	key,	d,	shall	be	generated	using	a	random	bit	generator	as	specified	in	FCS_RBG_EXT.1.	The	private
key,	d,	is	used	to	compute	the	public	key,	Q’.	The	evaluator	shall	confirm	that	0<d<n	(where	n	is	the	order	of
the	group),	and	the	computed	value	Q’	is	then	compared	to	the	generated	public/private	key	pairs’	public	key,
Q,	to	confirm	that	Q	is	equal	to	Q’.

Public	Key	Validation	(PKV)	Test

For	each	supported	curve,	the	evaluator	shall	generate	12	private/public	key	pairs	using	the	key	generation
function	of	a	known	good	implementation	and	modify	six	of	the	public	key	values	so	that	they	are	incorrect,
leaving	six	values	unchanged	(i.e.,	correct).	To	determine	correctness,	the	evaluator	shall	submit	the	12	key
pairs	to	the	public	key	validation	(PKV)	function	of	the	TOE	and	shall	confirm	that	the	results	correspond	as
expected	to	the	modified	and	unmodified	values.

AK4:	DSA	Key	Generation	using	Finite-Field	Cryptography	(FFC)

The	evaluator	shall	verify	the	implementation	of	the	Parameters	Generation	and	the	Key	Generation	for	FFC
by	the	TOE	using	the	Parameter	Generation	and	Key	Generation	test.	This	test	verifies	the	ability	of	the	TSF
to	correctly	produce	values	for	the	field	prime	p,	the	cryptographic	prime	q	(dividing	p-1),	the	cryptographic
group	generator	g,	and	the	calculation	of	the	private	key	x	and	public	key	y.

The	Parameter	generation	specifies	2	ways	(or	methods)	to	generate	the	cryptographic	prime	q	and	the	field
prime	p:

Primes	q	and	p	shall	both	be	provable	primes
Primes	q	and	field	prime	p	shall	both	be	probable	primes

and	two	ways	to	generate	the	cryptographic	group	generator	g:

Generator	g	constructed	through	a	verifiable	process
Generator	g	constructed	through	an	unverifiable	process.

The	Key	generation	specifies	2	ways	to	generate	the	private	key	x:

len(q)	bit	output	of	RBG	where	1	≤	x	≤	q-1
len(q)	+	64	bit	output	of	RBG,	followed	by	a	mod	q-1	operation	and	a	+1	operation,	where	1≤	x≤q-1.

The	security	strength	of	the	RBG	must	be	at	least	that	of	the	security	offered	by	the	FFC	parameter	set.

To	test	the	cryptographic	and	field	prime	generation	method	for	the	provable	primes	method	or	the	group
generator	g	for	a	verifiable	process,	the	evaluator	must	seed	the	TSF	parameter	generation	routine	with
sufficient	data	to	deterministically	generate	the	parameter	set.

For	each	key	length	supported,	the	evaluator	shall	have	the	TSF	generate	25	parameter	sets	and	key	pairs.
The	evaluator	shall	verify	the	correctness	of	the	TSF’s	implementation	by	comparing	values	generated	by	the
TSF	with	those	generated	from	a	known	good	implementation.	Verification	must	also	confirm

g	!=	0,1
q	divides	p-1
g^q	mod	p	=	1
g^x	mod	p	=	y

for	each	FFC	parameter	set	and	key	pair.

AK5:	Curve25519	Key	Generation

The	evaluator	shall	require	the	implementation	under	test	(IUT)	to	generate	10	private/public	key	pairs.	The
private	key	shall	be	generated	as	specified	in	RFC	7748	using	an	approved	random	bit	generator	(RBG)	and
shall	be	written	in	littleendian	order	(least	significant	byte	first.	To	determine	correctness,	the	evaluator	shall
submit	the	generated	key	pairs	to	the	public	key	verification	(PKV)	function	of	a	known	good	implementation.

Note:	Assuming	the	PKV	function	of	the	good	implementation	will	(using	little-endian	order):

Confirm	the	private	and	public	keys	are	32-byte	values
Confirm	the	three	least	significant	bits	of	the	first	byte	of	the	private	key	are	zero
Confirm	the	most	significant	bit	of	the	last	byte	is	zero
Confirm	the	second	most	significant	bit	of	the	last	byte	is	one
Calculate	the	expected	public	key	from	the	private	key	and	confirm	it	matches	the	supplied	public	key

The	evaluator	shall	generate	10	private/public	key	pairs	using	the	key	generation	function	of	a	known	good
implementation	and	modify	5	of	the	public	key	values	so	that	they	are	incorrect,	leaving	five	values
unchanged	(i.e.	correct).	The	evaluator	shall	obtain	in	response	a	set	of	10	PASS/FAIL	values.

FCS_CKM.1/SK	Cryptographic	Key	Generation	(Symmetric	Encryption	Key)

TSS
The	evaluator	shall	examine	the	TSS	to	verify	that	it	describes	how	the	TOE	obtains	an	SK	through	direct
generation	as	specified	in	FCS_RBG_EXT.1,	FCS_COP.1/KDF,	or	FCS_COP.1/PBKDF.	The	evaluator	shall
review	the	TSS	to	verify	that	it	describes	how	the	ST	invokes	the	functionality	described	by	FCS_RBG_EXT.1
and	FCS_COP.1/PBKDF	where	applicable.

[conditional]	If	the	symmetric	key	is	generated	by	an	RBG,	the	evaluator	shall	review	the	TSS	to	determine
that	it	describes	how	the	functionality	described	by	FCS_RBG_EXT.1	is	invoked.	The	evaluator	uses	the
description	of	the	RBG	functionality	in	FCS_RBG_EXT.1	or	documentation	available	for	the	operational
environment	to	determine	that	the	key	size	being	requested	is	greater	than	or	equal	to	the	key	size	and	mode
to	be	used	for	the	encryption/decryption	of	the	data.
Guidance
The	evaluator	shall	verify	that	the	AGD	guidance	instructs	the	administrator	how	to	configure	the	TOE	to	use
the	selected	key	types	for	all	uses	identified	in	the	ST.
KMD
The	evaluator	shall	confirm	that	the	KMD	describes,	as	applicable:

The	RBG	interface	and	how	the	ST	uses	it	in	symmetric	key	generation
The	KDF	interface	and	how	the	ST	uses	it	in	symmetric	key	generation
The	PBKDF	interface	and	how	the	ST	uses	it	in	symmetric	key	generation
If	the	TOE	uses	the	generated	key	in	a	key	chain/hierarchy	then	the	KMD	shall	describe	how	the	ST	uses
the	key	as	part	of	the	key	chain/hierarchy.

Tests
For	each	selected	key	generation	method,	the	evaluator	shall	configure	the	selected	generation	capability.
The	evaluator	shall	use	the	description	of	the	RBG	interface	to	verify	that	the	TOE	requests	and	receives	an
amount	of	RBG	output	greater	than	or	equal	to	the	requested	key	size.	The	evaluator	shall	perform	the	tests
as	described	for	FCS_COP.1/KDF	and	FCS_COP.1/PBKDF.

FCS_CKM.1/KEK	Cryptographic	Key	Generation	(Key	Encryption	Key)

TSS
The	evaluator	shall	examine	the	key	hierarchy	section	of	the	TSS	to	ensure	that	the	formation	of	all	KEKs	is
described	and	that	the	key	sizes	match	that	described	by	the	ST	author.	The	evaluator	shall	examine	the	key
hierarchy	section	of	the	TSS	to	ensure	that	each	KEK	encrypts	keys	of	equal	or	lesser	security	strength	using
one	of	the	selected	methods.

[conditional]	If	the	KEK	is	generated	according	to	an	asymmetric	key	scheme,	the	evaluator	shall	review	the
TSS	to	determine	that	it	describes	how	the	functionality	described	by	FCS_CKM.1/AK	is	invoked.	The
evaluator	uses	the	description	of	the	key	generation	functionality	in	FCS_CKM.1/AK	or	documentation
available	for	the	operational	environment	to	determine	that	the	key	strength	being	requested	is	greater	than
or	equal	to	112	bits.

[conditional]	If	the	KEK	is	generated	according	to	a	symmetric	key	scheme,	the	evaluator	shall	review	the	TSS
to	determine	that	it	describes	how	the	functionality	described	by	FCS_CKM.1/SK	is	invoked.	The	evaluator
uses	the	description	of	the	RBG	functionality	in	FCS_RBG_EXT.1,	or	the	key	derivation	functionality	in	either
FCS_CKM_EXT.5	or	FCS_COP.1/PBKDF,	depending	on	the	key	generation	method	claimed,	to	determine	that
the	key	size	being	requested	is	greater	than	or	equal	to	the	key	size	and	mode	to	be	used	for	the
encryption/decryption	of	the	data.

[conditional]	If	the	KEK	is	formed	from	derivation,	the	evaluator	shall	verify	that	the	TSS	describes	the
method	of	derivation	and	that	this	method	is	consistent	with	FCS_CKM_EXT.5.

Guidance
There	are	no	guidance	evaluation	activities	for	this	component.
KMD
The	evaluator	shall	iterate	through	each	of	the	methods	selected	by	the	ST	and	confirm	that	the	KMD
describes	the	applicable	selected	methods.
Tests
The	evaluator	shall	iterate	through	each	of	the	methods	selected	by	the	ST	and	perform	all	applicable	tests
from	the	selected	methods.

FCS_CKM.2	Cryptographic	Key	Establishment

TSS
The	evaluator	shall	examine	the	TSS	to	ensure	that	ST	supports	at	least	one	key	establishment	scheme.	The
evaluator	also	ensures	that	for	each	key	establishment	scheme	selected	by	the	ST	in	FCS_CKM.2.1	it	also
supports	one	or	more	corresponding	methods	selected	in	FCS_COP.1/KAT.	If	the	ST	selects	RSA	in
FCS_CKM.2.1,	then	the	TOE	must	support	one	or	more	of	“KAS1,”	or	“KAS2,”	“KTS-OAEP,”	from
FCS_COP.1/KAT.	If	the	ST	selects	elliptic	curve-based,	then	the	TOE	must	support	one	or	more	of	“ECDH-
NIST”	or	“ECDH-BPC”	from	FCS_COP.1/KAT.	If	the	ST	selects	Diffie-Hellman-based	key	establishment,	then
the	TOE	must	support	“DH”	from	FCS_COP.1/KAT.

Guidance
The	evaluator	shall	verify	that	the	guidance	instructs	the	administrator	how	to	configure	the	TOE	to	use	the
selected	key	establishment	scheme.
KMD
There	are	no	KMD	evaluation	activities	for	this	component.
Tests
Testing	for	this	SFR	is	performed	under	the	corresponding	functions	in	FCS_COP.1/KAT.

FCS_CKM.4	Cryptographic	Key	Destruction

TSS
The	evaluator	shall	examine	the	TSS	to	ensure	it	lists	all	relevant	keys	and	keying	material	(describing	the
source	of	the	data,	all	memory	types	in	which	the	data	is	stored	(covering	storage	both	during	and	outside	of

a	session,	and	both	plaintext	and	non-plaintext	forms	of	the	data)),	all	relevant	destruction	situations
(including	the	point	in	time	at	which	the	destruction	occurs;	e.g.	factory	reset	or	device	wipe	function,	change
of	authorization	data,	change	of	DEK,	completion	of	use	of	an	intermediate	key)	and	the	destruction	method
used	in	each	case.	The	evaluator	shall	confirm	that	the	description	of	the	data	and	storage	locations	is
consistent	with	the	functions	carried	out	by	the	TOE	(e.g.	that	all	keys	in	the	key	chain	are	accounted	for).
(Where	keys	are	stored	encrypted	or	wrapped	under	another	key	then	this	may	need	to	be	explained	in	order
to	allow	the	evaluator	to	confirm	the	consistency	of	the	description	of	keys	with	the	TOE	functions).

The	evaluator	shall	check	that	the	TSS	identifies	any	configurations	or	circumstances	that	may	not	conform	to
the	key	destruction	requirement	(see	further	discussion	in	the	AGD	section	below).	Note	that	reference	may
be	made	to	the	AGD	for	description	of	the	detail	of	such	cases	where	destruction	may	be	prevented	or
delayed.

Where	the	ST	specifies	the	use	of	“a	value	that	does	not	contain	any	sensitive	data”	to	overwrite	keys,	the
evaluator	shall	examine	the	TSS	to	ensure	that	it	describes	how	that	pattern	is	obtained	and	used,	and	that
this	justifies	the	claim	that	the	pattern	does	not	contain	any	sensitive	data.

Guidance
The	evaluator	shall	check	that	the	guidance	documentation	for	the	TOE	requires	users	to	ensure	that	the	TOE
remains	under	the	user’s	control	while	a	session	is	active.

A	TOE	may	be	subject	to	situations	that	could	prevent	or	delay	data	destruction	in	some	cases.	The	evaluator
shall	check	that	the	guidance	documentation	identifies	configurations	or	circumstances	that	may	not	strictly
conform	to	the	key	destruction	requirement,	and	that	this	description	is	consistent	with	the	relevant	parts	of
the	TSS	(and	KMD).	The	evaluator	shall	check	that	the	guidance	documentation	provides	guidance	on
situations	where	key	destruction	may	be	delayed	at	the	physical	layer,	identifying	any	additional	mitigation
actions	for	the	user	(e.g.	there	might	be	some	operation	the	user	can	invoke,	or	the	user	might	be	advised	to
retain	control	of	the	device	for	some	particular	time	to	maximise	the	probability	that	garbage	collection	will
have	occurred).

For	example,	when	the	TOE	does	not	have	full	access	to	the	physical	memory,	it	is	possible	that	the	storage
may	implement	wear-levelling	and	garbage	collection.	This	may	result	in	additional	copies	of	the	data	that	are
logically	inaccessible	but	persist	physically.	Where	available,	the	TOE	might	then	describe	use	of	the	TRIM
command	and	garbage	collection	to	destroy	these	persistent	copies	upon	their	deletion	(this	would	be
explained	in	TSS	and	guidance	documentation).

Where	TRIM	is	used	then	the	TSS	or	guidance	documentation	is	also	expected	to	describe	how	the	keys	are
stored	such	that	they	are	not	inaccessible	to	TRIM,	(e.g.	they	would	need	not	to	be	contained	in	a	file	less
than	982	bytes	which	would	be	completely	contained	in	the	master	file	table.

KMD
The	evaluator	shall	examine	the	KMD	to	verify	that	it	identifies	and	describes	the	interfaces	that	are	used	to
service	commands	to	read/write	memory.	The	evaluator	shall	examine	the	interface	description	for	each
different	media	type	to	ensure	that	the	interface	supports	the	selections	made	by	the	ST	author.

45	The	evaluator	shall	examine	the	KMD	to	ensure	that	all	keys	and	keying	material	identified	in	the	TSS	and
KMD	have	been	accounted	for.

46	Note	that	where	selections	include	‘destruction	of	reference	to	the	key	directly	followed	by	a	request	for
garbage	collection’	(for	volatile	memory)	then	the	evaluator	shall	examine	the	KMD	to	ensure	that	it	explains
the	nature	of	the	destruction	of	the	reference,	the	request	for	garbage	collection,	and	of	the	garbage
collection	process	itself.

Tests
The	following	tests	require	the	developer	to	provide	access	to	a	test	platform	that	provides	the	evaluator	with
tools	that	are	typically	not	found	on	factory	products.

The	evaluator	shall	perform	the	following	tests:

Test	1:	Applied	to	each	key	or	keying	material	held	as	plaintext	in	volatile	memory	and	subject	to
destruction	by	overwrite	by	the	TOE	(whether	or	not	the	plaintext	value	is	subsequently	encrypted	for
storage	in	volatile	or	non-volatile	memory).

The	evaluator	shall:
1.	 Record	the	value	of	the	key	or	keying	material.
2.	 Cause	the	TOE	to	dump	the	SDO/SDE	memory	of	the	TOE	into	a	binary	file.
3.	 Search	the	content	of	the	binary	file	created	in	Step	#2	to	locate	all	instances	of	the	known	key

value	from	Step	#1.

Note	that	the	primary	purpose	of	Step	#3	is	to	demonstrate	that	appropriate	search	commands	are
being	used	for	Steps	#8	and	#9.

4.	 Cause	the	TOE	to	perform	normal	cryptographic	processing	with	the	key	from	Step	#1.
5.	 Cause	the	TOE	to	destroy	the	key.
6.	 Cause	the	TOE	to	stop	execution	but	not	exit.
7.	 Cause	the	TOE	to	dump	the	SDO/SDE	memory	of	the	TOE	into	a	binary	file.
8.	 Search	the	content	of	the	binary	file	created	in	Step	#7	for	instances	of	the	known	key	value	from

Step	#1.
9.	 Break	the	key	value	from	Step	#1	into	an	evaluator-chosen	set	of	fragments	and	perform	a	search

using	each	fragment.	(Note	that	the	evaluator	shall	first	confirm	with	the	developer	how	the	key	is
normally	stored,	in	order	to	choose	fragment	sizes	that	are	the	same	or	smaller	than	any
fragmentation	of	the	data	that	may	be	implemented	by	the	TOE.	The	endianness	or	byte-order
should	also	be	taken	into	account	in	the	search.)

Steps	#1-8	ensure	that	the	complete	key	does	not	exist	anywhere	in	volatile	memory.	If	a	copy	is	found,
then	the	test	fails.

Step	#9	ensures	that	partial	key	fragments	do	not	remain	in	memory.	If	the	evaluator	finds	a	32-or-
greater-consecutive-bit	fragment,	then	fail	immediately.	Otherwise,	there	is	a	chance	that	it	is	not	within
the	context	of	a	key	(e.g.,	some	random	bits	that	happen	to	match).	If	this	is	the	case	the	test	should	be
repeated	with	a	different	key	in	Step	#1.	If	a	fragment	is	also	found	in	this	repeated	run	then	the	test
fails	unless	the	developer	provides	a	reasonable	explanation	for	the	collision,	then	the	evaluator	may	give
a	pass	on	this	test.

Test	2:	Applied	to	each	key	and	keying	material	held	in	non-volatile	memory	and	subject	to	destruction
by	overwrite	by	the	TOE.
1.	 Record	the	value	of	the	key	or	keying	material.
2.	 Cause	the	TOE	to	perform	normal	cryptographic	processing	with	the	key	from	Step	#1.
3.	 Search	the	non-volatile	memory	the	key	was	stored	in	for	instances	of	the	known	key	value	from

Step	#1.

Note	that	the	primary	purpose	of	Step	#3	is	to	demonstrate	that	appropriate	search	commands	are
being	used	for	Steps	#5	and	#6.

4.	 Cause	the	TOE	to	clear	the	key.
5.	 Search	the	non-volatile	memory	in	which	the	key	was	stored	for	instances	of	the	known	key	value

from	Step	#1.	If	a	copy	is	found,	then	the	test	fails.
6.	 Break	the	key	value	from	Step	#1	into	an	evaluator-chosen	set	of	fragments	and	perform	a	search

using	each	fragment.	(Note	that	the	evaluator	shall	first	confirm	with	the	developer	how	the	key	is
normally	stored,	in	order	to	choose	fragment	sizes	that	are	the	same	or	smaller	than	any
fragmentation	of	the	data	that	may	be	implemented	by	the	TOE.	The	endianness	or	byte-order
should	also	be	taken	into	account	in	the	search).

Step	#6	ensures	that	partial	key	fragments	do	not	remain	in	non-volatile	memory.	If	the	evaluator	finds	a
32-or-greater-consecutive-bit	fragment,	then	fail	immediately.	Otherwise,	there	is	a	chance	that	it	is	not
within	the	context	of	a	key	(e.g.,	some	random	bits	that	happen	to	match).	If	this	is	the	case	the	test
should	be	repeated	with	a	different	key	in	Step	#1.	If	a	fragment	is	also	found	in	this	repeated	run	then
the	test	fails	unless	the	developer	provides	a	reasonable	explanation	for	the	collision,	then	the	evaluator
may	give	a	pass	on	this	test.
Test	3:	Applied	to	each	key	and	keying	material	held	in	non-volatile	memory	and	subject	to	destruction
by	overwrite	by	the	TOE.
1.	 Record	memory	of	the	key	or	keying	material.
2.	 Cause	the	TOE	to	perform	normal	cryptographic	processing	with	the	key	from	Step	#1.
3.	 Cause	the	TOE	to	clear	the	key.	Record	the	value	to	be	used	for	the	overwrite	of	the	key.
4.	 Examine	the	memory	from	Step	#1	to	ensure	the	appropriate	pattern	(recorded	in	Step	#3)	is	used.

The	test	succeeds	if	correct	pattern	is	found	in	the	memory	location.	If	the	pattern	is	not	found,	then	the
test	fails.

FCS_CKM_EXT.4	Cryptographic	Key	and	Key	Material	Destruction	Timing

TSS
The	evaluator	shall	verify	the	TSS	provides	a	high-level	description	of	what	it	means	for	keys	and	key	material
to	be	no	longer	needed	and	when	this	data	should	be	expected	to	be	destroyed.
Guidance
There	are	no	guidance	evaluation	activities	for	this	component.
KMD
The	evaluator	shall	verify	that	the	KMD	includes	a	description	of	the	areas	where	keys	and	key	material
reside	and	when	this	data	is	no	longer	needed.

The	evaluator	shall	verify	that	the	KMD	includes	a	key	lifecycle	that	includes	a	description	where	key
materials	reside,	how	the	key	materials	are	used,	how	it	is	determined	that	keys	and	key	material	are	no
longer	needed,	and	how	the	data	is	destroyed	once	it	is	no	longer	needed.	The	evaluator	shall	also	verify	that
all	key	destruction	operations	are	performed	in	a	manner	specified	by	FCS_CKM.4.

Tests
There	are	no	test	evaluation	activities	for	this	component

FCS_CKM_EXT.5	Cryptographic	Key	Derivation

TSS
The	evaluator	shall	check	that	the	TSS	includes	a	description	of	the	key	derivation	functions	and	shall	check
that	this	uses	a	key	derivation	algorithm	and	key	sizes	according	to	the	specification	selected	in	the	ST	out	of
the	table	as	provided	in	the	cPP	table	per	row.	The	evaluator	shall	confirm	that	the	TSS	supports	the	selected
methods.

If	KeyDrv5	is	selected,	the	evaluator	shall	verify	that	the	TSS	shows	that	the	total	length	of	the	concatenated
keys	used	as	input	to	the	KDF	is	greater	than	or	equal	to	the	length	of	the	output	from	the	KDF.

[conditional]	If	key	combination	is	used	to	form	a	KEK,	the	evaluator	shall	verify	that	the	TSS	describes	the
method	of	combination	and	that	this	method	is	either	an	XOR,	a	KDF,	or	encryption.

[conditional]	If	a	KDF	is	used	to	form	a	KEK,	the	evaluator	shall	ensure	that	the	TSS	includes	a	description	of
the	key	derivation	function	and	shall	verify	the	key	derivation	uses	an	approved	derivation	mode	and	key
expansion	algorithm	according	to	SP	800-108.

[conditional]	If	key	concatenation	is	used	to	derive	KEKs	(KeyDrv5),	the	evaluator	shall	ensure	the	TSS
includes	a	description	of	the	randomness	extraction	step,	including	the	following:

The	description	must	include	how	an	approved	untruncated	MAC	function	is	being	used	for	the
randomness	extraction	step	and	the	evaluator	must	verify	the	TSS	describes	that	the	output	length	(in
bits)	of	the	MAC	function	is	at	least	as	large	as	the	targeted	security	strength	(in	bits)	of	the	parameter
set	employed	by	the	key	establishment	scheme	(see	Tables	1-3	of	SP	800-56C).
The	description	must	include	how	the	MAC	function	being	used	for	the	randomness	extraction	step	is
related	to	the	PRF	used	in	the	key	expansion	and	verify	the	TSS	description	includes	the	correct	MAC
function:

If	an	HMAC-hash	is	used	in	the	randomness	extraction	step,	then	the	same	HMAC-hash	(with	the
same	hash	function	hash)	is	used	as	the	PRF	in	the	key	expansion	step.
If	an	AES-CMAC	(with	key	length	128,	192,	or	256	bits)	is	used	in	the	randomness	extraction	step,
then	AES-CMAC	with	a	128-bit	key	is	used	as	the	PRF	in	the	key	expansion	step.

The	description	must	include	the	lengths	of	the	salt	values	being	used	in	the	randomness	extraction	step
and	the	evaluator	shall	verify	the	TSS	description	includes	correct	salt	lengths:

If	an	HMAC-hash	is	being	used	as	the	MAC,	the	salt	length	can	be	any	value	up	to	the	maximum	bit
length	permitted	for	input	to	the	hash	function	hash.
If	an	AES-CMAC	is	being	used	as	the	MAC,	the	salt	length	shall	be	the	same	length	as	the	AES	key
(i.e.	128,	192,	or	256	bits).

Guidance
The	evaluator	shall	verify	that	the	AGD	guidance	instructs	the	administrator	how	to	configure	the	TOE	to	use
the	selected	key	types	for	all	uses	identified	in	the	ST.
KMD
The	evaluator	shall	examine	the	KMD	to	ensure	that:

The	KMD	describes	the	complete	key	derivation	chain	and	the	description	must	be	consistent	with	the
description	in	the	TSS.	For	all	key	derivations	the	TOE	must	use	a	method	as	described	in	the	cPP	table.
There	should	be	no	uncertainty	about	how	a	key	is	derived	from	another	in	the	chain.
The	length	of	the	key	derivation	key	is	defined	by	the	PRF.	The	evaluator	should	check	whether	the	key
derivation	key	length	is	consistent	with	the	length	provided	by	the	selected	PRF.
If	a	key	is	used	as	an	input	to	several	KDFs,	each	invocation	must	use	a	distinct	context	string.	If	the
output	of	a	KDF	execution	is	used	for	multiple	cryptographic	keys,	those	keys	must	be	disjoint	segments
of	the	output.

Tests
The	following	tests	require	the	developer	to	provide	access	to	a	test	platform	that	provides	the	evaluator	with
tools	that	are	typically	not	found	on	factory	products.

The	evaluator	shall	perform	one	or	more	of	the	following	tests	to	verify	the	correctness	of	the	key	derivation
function,	depending	on	the	specific	functions	that	are	supported:

Preconditions	for	testing:

Specification	of	input	parameter	to	the	key	derivation	function	to	be	tested
Specification	of	further	required	input	parameters
Access	to	derived	keys

The	following	table	maps	the	data	fields	in	the	tests	below	to	the	notations	used	in	SP	800-108	and	SP	800-
56C

Data	Fields Notations

SP	800-108 SP	800-56C

Pseudorandom	function PRF PRF

Counter	length r r

Length	of	output	of	PRF r r

Length	of	derived	keying	material L L

Length	of	input	values I_length I_length

Pseudorandom	input	values	I K1	(key	derivation	key) Z	(shared	secret)

Pseudorandom	salt	values S

Randomness	extraction	MAC n/a MAC

The	below	tests	are	derived	from	Key	Derivation	using	Pseudorandom	Functions	(SP	800-108)	Validation
System	(KBKDFVS),	Updated	4	January	2016,	Section	6.2,	from	the	National	Institute	of	Standards	and
Technology.

KeyDrv1:	Counter	Mode	Tests:
The	evaluator	shall	determine	the	following	characteristics	of	the	key	derivation	function:

One	or	more	pseudorandom	functions	that	are	supported	by	the	implementation	(PRF).
One	or	more	of	the	values	{8,	16,	24,	32}	that	equal	the	length	of	the	binary	representation	of	the
counter	(r).
The	length	(in	bits)	of	the	output	of	the	PRF	(h).
Minimum	and	maximum	values	for	the	length	(in	bits)	of	the	derived	keying	material	(L).	These	values
can	be	equal	if	only	one	value	of	L	is	supported.	These	must	be	evenly	divisible	by	h.
Up	to	two	values	of	L	that	are	NOT	evenly	divisible	by	h.
Location	of	the	counter	relative	to	fixed	input	data:	before,	after,	or	in	the	middle.

Counter	before	fixed	input	data:	fixed	input	data	string	length	(in	bytes),	fixed	input	data	string
value.
Counter	after	fixed	input	data:	fixed	input	data	string	length	(in	bytes),	fixed	input	data	string	value.

Counter	in	the	middle	of	fixed	input	data:	length	of	data	before	counter	(in	bytes),	length	of	data
after	counter	(in	bytes),	value	of	string	input	before	counter,	value	of	string	input	after	counter.

The	length	(I_length)	of	the	input	values	I.

For	each	supported	combination	of	I_length,	MAC,	salt,	PRF,	counter	location,	value	of	r,	and	value	of	L,	the
evaluator	shall	generate	10	test	vectors	that	include	pseudorandom	input	values	I,	and	pseudorandom	salt
values.	If	there	is	only	one	value	of	L	that	is	evenly	divisible	by	h,	the	evaluator	shall	generate	20	test	vectors
for	it.	For	each	test	vector,	the	evaluator	shall	supply	this	data	to	the	TOE	in	order	to	produce	the	keying
material	output.

The	results	from	each	test	may	either	be	obtained	by	the	evaluator	directly	or	by	supplying	the	inputs	to	the
implementer	and	receiving	the	results	in	response.	To	determine	correctness,	the	evaluator	shall	compare	the
resulting	values	to	those	obtained	by	submitting	the	same	inputs	to	a	known	good	implementation.

KeyDrv2:	Feedback	Mode	Tests:

The	evaluator	shall	determine	the	following	characteristics	of	the	key	derivation	function:

One	or	more	pseudorandom	functions	that	are	supported	by	the	implementation	(PRF).
The	length	(in	bits)	of	the	output	of	the	PRF	(h).
Minimum	and	maximum	values	for	the	length	(in	bits)	of	the	derived	keying	material	(L).	These	values
can	be	equal	if	only	one	value	of	L	is	supported.	These	must	be	evenly	divisible	by	h.
Up	to	two	values	of	L	that	are	NOT	evenly	divisible	by	h.
Whether	or	not	zero-length	IVs	are	supported.
Whether	or	not	a	counter	is	used,	and	if	so:

One	or	more	of	the	values	{8,	16,	24,	32}	that	equal	the	length	of	the	binary	representation	of	the
counter	(r).
Location	of	the	counter	relative	to	fixed	input	data:	before,	after,	or	in	the	middle.

Counter	before	fixed	input	data:	fixed	input	data	string	length	(in	bytes),	fixed	input	data	string
value.
Counter	after	fixed	input	data:	fixed	input	data	string	length	(in	bytes),	fixed	input	data	string
value.
Counter	in	the	middle	of	fixed	input	data:	length	of	data	before	counter	(in	bytes),	length	of
data	after	counter	(in	bytes),	value	of	string	input	before	counter,	value	of	string	input	after
counter.

The	length	(I_length)	of	the	input	values	L.

For	each	supported	combination	of	I_length,	MAC,	salt,	PRF,	counter	location	(if	a	counter	is	used),	value	of	r
(if	a	counter	is	used),	and	value	of	L,	the	evaluator	shall	generate	10	test	vectors	that	include	pseudorandom
input	values	I	and	pseudorandom	salt	values.	If	the	KDF	supports	zero-length	IVs,	five	of	these	test	vectors
will	be	accompanied	by	pseudorandom	IVs	and	the	other	five	will	use	zerolength	IVs.	If	zero-length	IVs	are
not	supported,	each	test	vector	will	be	accompanied	by	an	pseudorandom	IV.	If	there	is	only	one	value	of	L
that	is	evenly	divisible	by	h,	the	evaluator	shall	generate	20	test	vectors	for	it.

For	each	test	vector,	the	evaluator	shall	supply	this	data	to	the	TOE	in	order	to	produce	the	keying	material
output.	The	results	from	each	test	may	either	be	obtained	by	the	evaluator	directly	or	by	supplying	the	inputs
to	the	implementer	and	receiving	the	results	in	response.	To	determine	correctness,	the	evaluator	shall
compare	the	resulting	values	to	those	obtained	by	submitting	the	same	inputs	to	a	known	good
implementation.

KeyDrv3:	Double	Pipeline	Iteration	Mode	Tests:

The	evaluator	shall	determine	the	following	characteristics	of	the	key	derivation	function:

One	or	more	pseudorandom	functions	that	are	supported	by	the	implementation	(PRF).
The	length	(in	bits)	of	the	output	of	the	PRF	(h).
Minimum	and	maximum	values	for	the	length	(in	bits)	of	the	derived	keying	material	(L).	These	values
can	be	equal	if	only	one	value	of	L	is	supported.	These	must	be	evenly	divisible	by	h.
Up	to	two	values	of	L	that	are	NOT	evenly	divisible	by	h.
Whether	or	not	a	counter	is	used,	and	if	so:

One	or	more	of	the	values	{8,	16,	24,	32}	that	equal	the	length	of	the	binary	representation	of	the
counter	(r).
Location	of	the	counter	relative	to	fixed	input	data:	before,	after,	or	in	the	middle.

Counter	before	fixed	input	data:	fixed	input	data	string	length	(in	bytes),	fixed	input	data	string
value.
Counter	after	fixed	input	data:	fixed	input	data	string	length	(in	bytes),	fixed	input	data	string
value.
Counter	in	the	middle	of	fixed	input	data:	length	of	data	before	counter	(in	bytes),	length	of
data	after	counter	(in	bytes),	value	of	string	input	before	counter,	value	of	string	input	after
counter.

The	length	(I_length)	of	the	input	values	I.

For	each	supported	combination	of	I_length,	MAC,	salt,	PRF,	counter	location	(if	a	counter	is	used),	value	of	r
(if	a	counter	is	used),	and	value	of	L,	the	evaluator	shall	generate	10	test	vectors	that	include	pseudorandom
input	values	I,	and	pseudorandom	salt	values.	If	there	is	only	one	value	of	L	that	is	evenly	divisible	by	h,	the
evaluator	shall	generate	20	test	vectors	for	it.

For	each	test	vector,	the	evaluator	shall	supply	this	data	to	the	TOE	in	order	to	produce	the	keying	material
output.	The	results	from	each	test	may	either	be	obtained	by	the	evaluator	directly	or	by	supplying	the	inputs
to	the	implementer	and	receiving	the	results	in	response.	To	determine	correctness,	the	evaluator	shall
compare	the	resulting	values	to	those	obtained	by	submitting	the	same	inputs	to	a	known	good
implementation.

KeyDrv4:	Intermediate	Keys	Method

If	the	selected	algorithm	is	a	hash	then	the	testing	of	the	hash	primitive	is	the	only	required	Evaluation
Activity.	If	the	selected	algorithm	is	XOR	then	no	separate	primitive	testing	is	necessary.

KeyDrv5:	Concatenated	Keys	Method

The	evaluator	should	confirm	that	the	combined	length	of	the	concatenated	keys	should	be	at	least	as	long	as
the	keysize	of	the	selected	methods.	There	are	no	other	tests	other	than	for	the	methods	selected	for	this	row
performed	for	KeyDrv1,	KeyDrv2,	and	KeyDrv3.

KeyDrv6:	Two	Keys	Method

The	evaluator	should	confirm	that	the	combined	length	of	the	two	keys	should	be	at	least	as	long	as	the
keysize	of	the	selected	methods.	There	are	no	other	tests	other	than	for	the	methods	selected	for	this	row
from	FCD_COP.1/SK.

KeyDrv7:	Shared	Secret,	Salt,	Output	Length,	Fixed	Information	Method

For	each	supported	selection	of	PRF,	length	of	shared	secret	(Z)	[selection:	128,	256]	bits,	length	of	salt	(S)
[selection:	length	of	input	block	of	PRF,	one-half	length	of	input	block	of	PRF,	0]	bits,	output	length	(L)
[selection:	128,	256]	bits,	and	length	of	fixed	information	(FixedInfo)	[selection:	length	of	on	input	block	of
PRF,	onehalf	length	of	input	block	of	PRF,	0]	bits,	the	evaluator	shall	generate	10	test	vectors	that	include
pseudorandom	input	values	for	Z,	salt	values	(for	non-zero	lengths,	otherwise,	omit)	and	fixed	information	(for
non-zero	lengths,	otherwise,	omit).

For	each	test	vector,	the	evaluator	shall	supply	this	data	to	the	TOE	in	order	to	produce	the	keying	material
output.	The	results	from	each	test	may	either	be	obtained	by	the	evaluator	directly	or	by	supplying	the	inputs
to	the	implementer	and	receiving	the	results	in	response.	To	determine	correctness,	the	evaluator	shall
compare	the	resulting	values	to	those	obtained	by	submitting	the	same	inputs	to	a	known	good
implementation.

KeyDrv8:	Shared	Secret,	Salt,	IV,	Output	Length,	Fixed	Information	Method

For	each	supported	selection	of	PRF,	length	of	shared	secret	(Z),	length	of	salt,	length	of	initialization	vector
(IV),	output	length	(L),	and	length	of	fixed	information	(FixedInfo),	the	evaluator	shall	generate	10	test
vectors	that	include	pseudorandom	input	values	for	Z,	salt	values	(for	non-zero	lengths,	otherwise,	omit),	IV
(for	non-zero	lengths,	otherwise,	use	a	vector	of	length	equal	to	length	of	input	block	of	PRF	and	fill	with
zeros),	and	fixed	information	(for	non-zero	lengths,	otherwise,	omit).

For	each	test	vector,	the	evaluator	shall	supply	this	data	to	the	TOE	in	order	to	produce	the	keying	material
output.	The	results	from	each	test	may	either	be	obtained	by	the	evaluator	directly	or	by	supplying	the	inputs
to	the	implementer	and	receiving	the	results	in	response.	To	determine	correctness,	the	evaluator	shall
compare	the	resulting	values	to	those	obtained	by	submitting	the	same	inputs	to	a	known	good
implementation.

FCS_COP.1/Hash	Cryptographic	Operation	(Hashing)

TSS
The	evaluator	shall	check	that	the	association	of	the	hash	function	with	other	TSF	cryptographic	functions
(for	example,	the	digital	signature	verification	function)	is	documented	in	the	TSS.	The	evaluator	shall	also
check	that	the	TSS	identifies	whether	the	implementation	is	bit-oriented	or	byte-oriented.
Guidance
The	evaluator	checks	the	AGD	documents	to	determine	that	any	configuration	that	is	required	to	configure
the	required	hash	sizes	is	present.	The	evaluator	also	checks	the	AGD	documents	to	confirm	that	the
instructions	for	establishing	the	evaluated	configuration	use	only	those	hash	algorithms	selected	in	the	ST.
KMD
There	are	no	KMD	evaluation	activities	for	this	component.
Tests
The	following	tests	require	the	developer	to	provide	access	to	a	test	platform	that	provides	the	evaluator	with
tools	that	are	typically	not	found	on	factory	products.

SHA-1	and	SHA-2	Tests

The	tests	below	are	derived	from	the	“The	Secure	Hash	Algorithm	Validation	System	(SHAVS),	Updated:	May
21,	2014”	from	the	National	Institute	of	Standards	and	Technology.

The	TSF	hashing	functions	can	be	implemented	with	one	of	two	orientations.	The	first	is	a	byte-oriented
implementation:	this	hashes	messages	that	are	an	integral	number	of	bytes	in	length	(i.e.,	the	length	(in	bits)
of	the	message	to	be	hashed	is	divisible	by	8).	The	second	is	a	bit-oriented	implementation:	this	hashes
messages	of	arbitrary	length.	Separate	tests	for	each	orientation	are	given	below.

The	evaluator	shall	perform	all	of	the	following	tests	for	each	hash	algorithm	and	orientation	implemented	by
the	TSF	and	used	to	satisfy	the	requirements	of	this	PP.	The	evaluator	shall	compare	digest	values	produced
by	a	known-good	SHA	implementation	against	those	generated	by	running	the	same	values	through	the	TSF.

Short	Messages	Test,	Bit-oriented	Implementation

The	evaluators	devise	an	input	set	consisting	of	m+1	messages,	where	m	is	the	block	length	of	the	hash
algorithm	in	bits	(see	SHA	Properties	Table).	The	length	of	the	messages	ranges	sequentially	from	0	to	m	bits.
The	message	text	shall	be	pseudorandomly	generated.	The	evaluators	compute	the	message	digest	for	each	of
the	messages	and	ensure	that	the	correct	result	is	produced	when	the	messages	are	provided	to	the	TSF.

Short	Messages	Test,	Byte-oriented	Implementation

The	evaluators	devise	an	input	set	consisting	of	m/8+1	messages,	where	m	is	the	block	length	of	the	hash
algorithm	in	bits	(see	SHA	Properties	Table).	The	length	of	the	messages	ranges	sequentially	from	0	to	m/8
bytes,	with	each	message	being	an	integral	number	of	bytes.	The	message	text	shall	be	pseudo-randomly
generated.	The	evaluators	compute	the	message	digest	for	each	of	the	messages	and	ensure	that	the	correct
result	is	produced	when	the	messages	are	provided	to	the	TSF.

Selected	Long	Messages	Test,	Bit-oriented	Implementation

The	evaluators	devise	an	input	set	consisting	of	m	messages,	where	m	is	the	block	length	of	the	hash
algorithm	in	bits	(see	SHA	Properties	Table).	The	length	of	the	ith	message	is	m	+	99*i,	where	1	≤	i	≤	m.	The
message	text	shall	be	pseudorandomly	generated.	The	evaluators	compute	the	message	digest	for	each	of	the
messages	and	ensure	that	the	correct	result	is	produced	when	the	messages	are	provided	to	the	TSF.

Selected	Long	Messages	Test,	Byte-oriented	Implementation

The	evaluators	devise	an	input	set	consisting	of	m/8	messages,	where	m	is	the	block	length	of	the	hash
algorithm	in	bits	(see	SHA	Properties	Table).	The	length	of	the	ith	message	is	m	+	8*99*i,	where	1	≤	i	≤	m/8.
The	message	text	shall	be	pseudorandomly	generated.	The	evaluators	compute	the	message	digest	for	each	of
the	messages	and	ensure	that	the	correct	result	is	produced	when	the	messages	are	provided	to	the	TSF.

Pseudo-randomly	Generated	Messages	Test

The	evaluators	randomly	generate	a	seed	that	is	n	bits	long,	where	n	is	the	length	of	the	message	digest
produced	by	the	hash	function	to	be	tested.	The	evaluators	then	formulate	a	set	of	100	messages	and
associated	digests	by	following	the	algorithm	provided	in	Figure	1	of	SHAVS,	section	6.4.	The	evaluators	then
ensure	that	the	correct	result	is	produced	when	the	messages	are	provided	to	the	TSF.

SHA-3	Tests

The	tests	below	are	derived	from	the	The	Secure	Hash	Algorithm-3	Validation	System	(SHA3VS),	Updated:
April	7,	2016,	from	the	National	Institute	of	Standards	and	Technology.

For	each	SHA-3-XXX	implementation,	XXX	represents	d,	the	digest	length	in	bits.	The	capacity,	c,	is	equal	to
2d	bits.	The	rate	is	equal	to	1600-c	bits.

65	The	TSF	hashing	functions	can	be	implemented	with	one	of	two	orientations.	The	first	is	a	bit-oriented
mode	that	hashes	messages	of	arbitrary	length.	The	second	is	a	byte-oriented	mode	that	hashes	messages
that	are	an	integral	number	of	bytes	in	length	(i.e.,	the	length	(in	bits)	of	the	message	to	be	hashed	is	divisible
by	8).	Separate	tests	for	each	orientation	are	given	below.

The	evaluator	shall	perform	all	of	the	following	tests	for	each	hash	algorithm	and	orientation	implemented	by
the	TSF	and	used	to	satisfy	the	requirements	of	this	PP.	The	evaluator	shall	compare	digest	values	produced
by	a	known-good	SHA-3	implementation	against	those	generated	by	running	the	same	values	through	the
TSF.

Short	Messages	Test,	Bit-oriented	Mode

The	evaluators	devise	an	input	set	consisting	of	rate+1	short	messages.	The	length	of	the	messages	ranges
sequentially	from	0	to	rate	bits.	The	message	text	shall	be	pseudo-randomly	generated.	The	evaluators
compute	the	message	digest	for	each	of	the	messages	and	ensure	that	the	correct	result	is	produced	when	the
messages	are	provided	to	the	TSF.	The	message	of	length	0	is	omitted	if	the	TOE	does	not	support	zero-length
messages.

Short	Messages	Test,	Byte-oriented	Mode

The	evaluators	devise	an	input	set	consisting	of	rate/8+1	short	messages.	The	length	of	the	messages	ranges
sequentially	from	0	to	rate/8	bytes,	with	each	message	being	an	integral	number	of	bytes.	The	message	text
shall	be	pseudo-randomly	generated.	The	evaluators	compute	the	message	digest	for	each	of	the	messages
and	ensure	that	the	correct	result	is	produced	when	the	messages	are	provided	to	the	TSF.	The	message	of
length	0	is	omitted	if	the	TOE	does	not	support	zero-length	messages.

Selected	Long	Messages	Test,	Bit-oriented	Mode

The	evaluators	devise	an	input	set	consisting	of	100	long	messages	ranging	in	size	from	rate+(rate+1)	to
rate+(100*(rate+1)),	incrementing	by	rate+1.	(For	example,	SHA-3-256	has	a	rate	of	1088	bits.	Therefore,
100	messages	will	be	generated	with	lengths	2177,	3266,	…,	109988	bits.)	The	message	text	shall	be	pseudo-
randomly	generated.	The	evaluators	compute	the	message	digest	for	each	of	the	messages	and	ensure	that
the	correct	result	is	produced	when	the	messages	are	provided	to	the	TSF.

Selected	Long	Messages	Test,	Byte-oriented	Mode

The	evaluators	devise	an	input	set	consisting	of	100	messages	ranging	in	size	from	(rate+(rate+8))	to
(rate+100*(rate+8)),	incrementing	by	rate+8.	(For	example,	SHA-3-256	has	a	rate	of	1088	bits.	Therefore
100	messages	will	be	generated	of	lengths	2184,	3280,	4376,	…,	110688	bits.)	The	message	text	shall	be
pseudorandomly	generated.	The	evaluators	compute	the	message	digest	for	each	of	the	messages	and	ensure
that	the	correct	result	is	produced	when	the	messages	are	provided	to	the	TSF.

Pseudo-randomly	Generated	Messages	Monte	Carlo)	Test,	Byte-oriented	Mode

The	evaluators	supply	a	seed	of	d	bits	(where	d	is	the	length	of	the	message	digest	produced	by	the	hash
function	to	be	tested.	This	seed	is	used	by	a	pseudorandom	function	to	generate	100,000	message	digests.
One	hundred	of	the	digests	(every	1000th	digest)	are	recorded	as	checkpoints.	The	TOE	then	uses	the	same

procedure	to	generate	the	same	100,000	message	digests	and	100	checkpoint	values.	The	evaluators	then
compare	the	results	generated	ensure	that	the	correct	result	is	produced	when	the	messages	are	generated
by	the	TSF.

FCS_COP.1/HMAC	Cryptographic	Operation	(Keyed	Hash)

TSS
The	evaluator	shall	examine	the	TSS	to	ensure	that	it	specifies	the	following	values	used	by	the	HMAC	and
KMAC	functions:	output	MAC	length	used.
Guidance
There	are	no	guidance	evaluation	activities	for	this	component.
KMD
There	are	no	KMD	evaluation	activities	for	this	component.
Tests
The	following	test	requires	the	developer	to	provide	access	to	a	test	platform	that	provides	the	evaluator	with
tools	that	are	typically	not	found	on	factory	products.

This	test	is	derived	from	The	Keyed-Hash	Message	Authentication	Code	Validation	System	(HMACVS),
updated	6	May	2016.

The	evaluator	shall	provide	15	sets	of	messages	and	keys	for	each	selected	hash	algorithm	and	hash
length/key	size/MAC	size	combination.	The	evaluator	shall	have	the	TSF	generate	HMAC	or	KMAC	tags	for
these	sets	of	test	data.	The	evaluator	shall	verify	that	the	resulting	HMAC	or	KMAC	tags	match	the	results
from	submitting	the	same	inputs	to	a	known-good	implementation	of	the	HMAC	or	KMAC	function,	having	the
same	characteristics.

FCS_COP.1/KAT	Cryptographic	Operation	(Key	Agreement/Transport)

TSS
The	evaluator	shall	ensure	that	the	selected	RSA	and	ECDH	key	agreement/transport	schemes	correspond	to
the	key	generation	schemes	selected	in	FCS_CKM.1/AK,	and	the	key	establishment	schemes	selected	in
FCS_CKM.2	If	the	ST	selects	DH,	the	TSS	shall	describe	how	the	implementation	meets	the	relevant	sections
of	RFC	3526	(Section	3-7)	and	RFC	7919	(Appendices	A.1-A.5).	If	the	ST	selects	ECIES,	the	TSS	shall	describe
the	key	sizes	and	algorithms	(e.g.	elliptic	curve	point	multiplication,	ECDH	with	either	NIST	or	Brainpool
curves,	AES	in	a	mode	permitted	by	FCS_COP.1/SKC,	a	SHA-2	hash	algorithm	permitted	by	FCS_COP.1/Hash,
and	a	MAC	algorithm	permitted	by	FCS_COP.1/HMAC)	that	are	supported	for	the	ECIES	implementation.

The	evaluator	shall	ensure	that,	for	each	key	agreement/transport	scheme,	the	size	of	the	derived	keying
material	is	at	least	the	same	as	the	intended	strength	of	the	key	agreement/transport	scheme,	and	where
feasible	this	should	be	twice	the	intended	security	strength	of	the	key	agreement/transport	scheme.

Table	2	of	NIST	SP	800-57	identifies	the	key	strengths	for	the	different	algorithms	that	can	be	used	for	the
various	key	agreement/transport	schemes.

Guidance
There	are	no	guidance	evaluation	activities	for	this	component.
KMD
There	are	no	KMD	evaluation	activities	for	this	component.
Tests
The	following	tests	require	the	developer	to	provide	access	to	a	test	platform	that	provides	the	evaluator	with
tools	that	are	typically	not	found	on	factory	products.

The	evaluator	shall	verify	the	implementation	of	the	key	generation	routines	of	the	supported	schemes	using
the	following	tests:

If	ECDH-NIST	or	ECDH-BPC	is	claimed:

SP800-56A	Key	Agreement	Schemes

The	evaluator	shall	verify	a	TOE's	implementation	of	SP800-56A	key	agreement	schemes	using	the	following
Function	and	Validity	tests.	These	validation	tests	for	each	key	agreement	scheme	verify	that	a	TOE	has
implemented	the	components	of	the	key	agreement	scheme	according	to	the	specifications	in	the
Recommendation.	These	components	include	the	calculation	of	the	DLC	primitives	(the	shared	secret	value	Z)
and	the	calculation	of	the	derived	keying	material	(DKM)	via	the	Key	Derivation	Function	(KDF).	If	key
confirmation	is	supported,	the	evaluator	shall	also	verify	that	the	components	of	key	confirmation	have	been
implemented	correctly,	using	the	test	procedures	described	below.	This	includes	the	parsing	of	the	DKM,	the
generation	of	MACdata	and	the	calculation	of	MACtag.

Function	Test

The	Function	test	verifies	the	ability	of	the	TOE	to	implement	the	key	agreement	schemes	correctly.	To
conduct	this	test	the	evaluator	shall	generate	or	obtain	test	vectors	from	a	known	good	implementation	of	the
TOE	supported	schemes.	For	each	supported	key	agreement	scheme-key	agreement	role	combination,	KDF
type,	and,	if	supported,	key	confirmation	role-key	confirmation	type	combination,	the	tester	shall	generate	10
sets	of	test	vectors.	The	data	set	consists	of	one	set	of	domain	parameter	values	(FFC)	or	the	NIST	approved
curve	(ECC)	per	10	sets	of	public	keys.	These	keys	are	static,	ephemeral	or	both	depending	on	the	scheme
being	tested.

The	evaluator	shall	obtain	the	DKM,	the	corresponding	TOE’s	public	keys	(static	or	ephemeral),	the	MAC
tags,	and	any	inputs	used	in	the	KDF,	such	as	the	Other	Information	field	OI	and	TOE	id	fields.

If	the	TOE	does	not	use	a	KDF	defined	in	SP	800-56A,	the	evaluator	shall	obtain	only	the	public	keys	and	the

hashed	value	of	the	shared	secret.

The	evaluator	shall	verify	the	correctness	of	the	TSF’s	implementation	of	a	given	scheme	by	using	a	known
good	implementation	to	calculate	the	shared	secret	value,	derive	the	keying	material	DKM,	and	compare
hashes	or	MAC	tags	generated	from	these	values.

If	key	confirmation	is	supported,	the	TSF	shall	perform	the	above	for	each	implemented	approved	MAC
algorithm.

Validity	Test

The	Validity	test	verifies	the	ability	of	the	TOE	to	recognize	another	party’s	valid	and	invalid	key	agreement
results	with	or	without	key	confirmation.	To	conduct	this	test,	the	evaluator	shall	obtain	a	list	of	the
supporting	cryptographic	functions	included	in	the	SP800-56A	key	agreement	implementation	to	determine
which	errors	the	TOE	should	be	able	to	recognize.	The	evaluator	generates	a	set	of	24	(FFC)	or	30	(ECC)	test
vectors	consisting	of	data	sets	including	domain	parameter	values	or	NIST	approved	curves,	the	evaluator’s
public	keys,	the	TOE’s	public/private	key	pairs,	MACTag,	and	any	inputs	used	in	the	KDF,	such	as	the	other
info	and	TOE	id	fields.

The	evaluator	shall	inject	an	error	in	some	of	the	test	vectors	to	test	that	the	TOE	recognizes	invalid	key
agreement	results	caused	by	the	following	fields	being	incorrect:	the	shared	secret	value	Z,	the	DKM,	the
other	information	field	OI,	the	data	to	be	MACed,	or	the	generated	MACTag.	If	the	TOE	contains	the	full	or
partial	(only	ECC)	public	key	validation,	The	evaluator	shall	also	individually	inject	errors	in	both	parties’
static	public	keys,	both	parties’	ephemeral	public	keys	and	the	TOE’s	static	private	key	to	assure	the	TOE
detects	errors	in	the	public	key	validation	function	or	the	partial	key	validation	function	(in	ECC	only).	At	least
two	of	the	test	vectors	shall	remain	unmodified	and	therefore	should	result	in	valid	key	agreement	results
(they	should	pass).

The	TOE	shall	use	these	modified	test	vectors	to	emulate	the	key	agreement	scheme	using	the	corresponding
parameters.	The	evaluator	shall	compare	the	TOE’s	results	with	the	results	using	a	known	good
implementation	verifying	that	the	TOE	detects	these	errors.

If	KAS1,	KAS2,	KTS-OAEP,	or	RSAES-PKCS1-v1_5	is	claimed:

SP800-56B	and	PKCS#1	Key	Establishment	Schemes

If	the	TOE	acts	as	a	sender,	the	following	evaluation	activity	shall	be	performed	to	ensure	the	proper
operation	of	every	TOE	supported	combination	of	RSA-based	key	establishment	scheme:

To	conduct	this	test	the	evaluator	shall	generate	or	obtain	test	vectors	from	a	known	good	implementation	of
the	TOE	supported	schemes.	For	each	combination	of	supported	key	establishment	scheme	and	its	options
(with	or	without	key	confirmation	if	supported,	for	each	supported	key	confirmation	MAC	function	if	key
confirmation	is	supported,	and	for	each	supported	mask	generation	function	if	KTS-OAEP	is	supported),	the
tester	shall	generate	10	sets	of	test	vectors.	Each	test	vector	shall	include	the	RSA	public	key,	the	plaintext
keying	material,	any	additional	input	parameters	if	applicable,	the	MacKey	and	MacTag	if	key	confirmation	is
incorporated,	and	the	outputted	ciphertext.	For	each	test	vector,	the	evaluator	shall	perform	a	key
establishment	encryption	operation	on	the	TOE	with	the	same	inputs	(in	cases	where	key	confirmation	is
incorporated,	the	test	shall	use	the	MacKey	from	the	test	vector	instead	of	the	randomly	generated	MacKey
used	in	normal	operation)	and	ensure	that	the	outputted	ciphertext	is	equivalent	to	the	ciphertext	in	the	test
vector.

If	the	TOE	acts	as	a	receiver,	the	following	evaluation	activities	shall	be	performed	to	ensure	the	proper
operation	of	every	TOE	supported	combination	of	RSA-based	key	establishment	scheme:

To	conduct	this	test	the	evaluator	shall	generate	or	obtain	test	vectors	from	a	known	good	implementation	of
the	TOE	supported	schemes.	For	each	combination	of	supported	key	establishment	scheme	and	its	options
(with	our	without	key	confirmation	if	supported,	for	each	supported	key	confirmation	MAC	function	if	key
confirmation	is	supported,	and	for	each	supported	mask	generation	function	if	KTSOAEP	is	supported),	the
tester	shall	generate	10	sets	of	test	vectors.	Each	test	vector	shall	include	the	RSA	private	key,	the	plaintext
keying	material	(KeyData),	any	additional	input	parameters	if	applicable,	the	MacTag	in	cases	where	key
confirmation	is	incorporated,	and	the	outputted	ciphertext.	For	each	test	vector,	the	evaluator	shall	perform
the	key	establishment	decryption	operation	on	the	TOE	and	ensure	that	the	outputted	plaintext	keying
material	(KeyData)	is	equivalent	to	the	plain	text	keying	material	in	the	test	vector.	In	cases	where	key
confirmation	is	incorporated,	the	evaluator	shall	perform	the	key	confirmation	steps	and	ensure	that	the
outputted	MacTag	is	equivalent	to	the	MacTag	in	the	test	vector.

The	evaluator	shall	ensure	that	the	TSS	describes	how	the	TOE	handles	decryption	errors.	In	accordance	with
NIST	Special	Publication	800-56B,	the	TOE	must	not	reveal	the	particular	error	that	occurred,	either	through
the	contents	of	any	outputted	or	logged	error	message	or	through	timing	variations.	If	KTS-OAEP	is
supported,	the	evaluator	shall	create	separate	contrived	ciphertext	values	that	trigger	each	of	the	three
decryption	error	checks	described	in	NIST	Special	Publication	800-56B	section	7.2.2.3,	ensure	that	each
decryption	attempt	results	in	an	error,	and	ensure	that	any	outputted	or	logged	error	message	is	identical	for
each.

DH:

The	evaluator	shall	verify	the	correctness	of	each	TSF	implementation	of	each	supported	Diffie-Hellman
group	by	comparison	with	a	known	good	implementation.

Curve25519:

The	evaluator	shall	verify	a	TOE's	implementation	of	the	key	agreement	scheme	using	the	following	Function
and	Validity	tests.	These	validation	tests	for	each	key	agreement	scheme	verify	that	a	TOE	has	implemented

the	components	of	the	key	agreement	scheme	according	to	the	specification.	These	components	include	the
calculation	of	the	shared	secret	K	and	the	hash	of	K.

Function	Test

The	Function	test	verifies	the	ability	of	the	TOE	to	implement	the	key	agreement	schemes	correctly.	To
conduct	this	test	the	evaluator	shall	generate	or	obtain	test	vectors	from	a	known	good	implementation	of	the
TOE	supported	schemes.	For	each	supported	key	agreement	role	and	hash	function	combination,	the	tester
shall	generate	10	sets	of	public	keys.	These	keys	are	static,	ephemeral	or	both	depending	on	the	scheme
being	tested.

The	evaluator	shall	obtain	the	shared	secret	value	K,	and	the	hash	of	K.	The	evaluator	shall	verify	the
correctness	of	the	TSF’s	implementation	of	a	given	scheme	by	using	a	known	good	implementation	to
calculate	the	shared	secret	value	K	and	compare	the	hash	generated	from	this	value.

Validity	Test

The	Validity	test	verifies	the	ability	of	the	TOE	to	recognize	another	party’s	valid	and	invalid	key	agreement
results.	To	conduct	this	test,	the	evaluator	generates	a	set	of	30	test	vectors	consisting	of	data	sets	including
the	evaluator’s	public	keys	and	the	TOE’s	public/private	key	pairs.

The	evaluator	shall	inject	an	error	in	some	of	the	test	vectors	to	test	that	the	TOE	recognizes	invalid	key
agreement	results	caused	by	the	following	fields	being	incorrect:	the	shared	secret	value	K	or	the	hash	of	K.
At	least	two	of	the	test	vectors	shall	remain	unmodified	and	therefore	should	result	in	valid	key	agreement
results	(they	should	pass).

The	TOE	shall	use	these	modified	test	vectors	to	emulate	the	key	agreement	scheme	using	the	corresponding
parameters.	The	evaluator	shall	compare	the	TOE’s	results	with	the	results	using	a	known	good
implementation	verifying	that	the	TOE	detects	these	errors.

ECIES:

The	evaluator	shall	verify	the	correctness	of	each	TSF	implementation	of	each	supported	use	of	ECIES	by
comparison	with	a	known	good	implementation.

FCS_COP.1/KeyEnc	Cryptographic	Operation	(Key	Encryption)

TSS
The	evaluator	shall	examine	the	TSS	to	ensure	that	it	identifies	whether	the	implementation	of	this
cryptographic	operation	for	key	encryption	(including	key	lengths	and	modes)	is	an	implementation	that	is
tested	in	FCS_COP.1/SKC.

The	evaluator	shall	check	that	the	TSS	includes	a	description	of	the	key	wrap	functions	and	shall	check	that
this	uses	a	key	wrap	algorithm	and	key	sizes	according	to	the	specification	selected	in	the	ST	out	of	the	table
as	provided	in	the	cPP	table.

Guidance
The	evaluator	checks	the	AGD	documents	to	confirm	that	the	instructions	for	establishing	the	evaluated
configuration	use	only	those	key	wrap	functions	selected	in	the	ST.	If	multiple	key	access	modes	are
supported,	the	evaluator	shall	examine	the	guidance	documentation	to	determine	that	the	method	of	choosing
a	specific	mode/key	size	by	the	end	user	is	described.

KMD
The	evaluator	shall	examine	the	KMD	to	ensure	that	it	describes	when	the	key	wrapping	occurs,	that	the	KMD
description	is	consistent	with	the	description	in	the	TSS,	and	that	for	all	keys	that	are	wrapped	the	TOE	uses
a	method	as	described	in	the	cPP	table.	No	uncertainty	should	be	left	over	which	is	the	wrapping	key	and	the
key	to	be	wrapped	and	where	the	wrapping	key	potentially	comes	from	i.e.	is	derived	from.

If	“AES-GCM”	or	“AES-CCM”	is	used	the	evaluator	shall	examine	the	KMD	to	ensure	that	it	describes	how	the
IV	is	generated	and	that	the	same	IV	is	never	reused	to	encrypt	different	plaintext	pairs	under	the	same	key.
Moreover	in	the	case	of	GCM,	he	must	ensure	that,	at	each	invocation	of	GCM,	the	length	of	the	plaintext	is	at
most	(2^32)-2	blocks.

Tests
Refer	to	FCS_COP.1/SKC	for	the	required	testing	for	each	symmetric	key	wrapping	method	selected	from	the
table	and	to	FCS_COP.1/KAT	for	the	required	testing	for	each	asymmetric	key	wrapping	method	selected
from	the	table.	Each	distinct	implementation	shall	be	tested	separately.

If	the	implementation	of	the	key	encryption	operation	is	the	same	implementation	tested	under
FCS_COP.1/SKC	or	FCS_COP.1/KAT,	and	it	has	been	tested	with	the	same	key	lengths	and	modes,	then	no
further	testing	is	required.	If	key	encryption	uses	a	different	implementation,	(where	“different
implementation”	includes	the	use	of	different	key	lengths	or	modes),	then	the	evaluator	shall	additionally	test
the	key	encryption	implementation	using	the	corresponding	tests	specified	for	FCS_COP.1/SKC	or
FCS_COP.1/KAT.

FCS_COP.1/PBKDF	Cryptographic	Operation	(Password-Based	Key	Derivation	Functions)

TSS
The	evaluator	shall	review	the	TSS	to	verify	that	it	contains	a	description	of	the	PBKDF.	The	evaluator	shall
also	confirm	the	ST	supports	the	selected	hash	function	itself.	The	evaluator	shall	confirm	that	the	TSS
contains	a	description	of	how	the	TOE	ensures	that	the	output	of	the	PBKDF	is	at	least	the	same	length	as
that	specified	in	FCS_CKM.1/SK	and	for	the	KeyDrv4,	KeyDrv5,	or	KeyDrv6	in	FCS_CKM_EXT.5.

If	the	ST	performs	additional	conditioning,	whitening,	or	manipulation	of	the	password	or	passphrase	before
applying	the	PBKDF,	or	to	the	output	of	the	PBKDF,	the	evaluator	shall	ensure	that	the	TSS	describes	the
actions	and	provides	assurance	that	the	TSF	does	not	negatively	impact	the	entropy	of	the	PBKDF	output.

If	any	manipulation	of	the	key	is	performed	in	forming	the	submask	that	will	be	used	to	form	the	KEK,	that
process	shall	be	described	in	the	TSS.
Guidance
There	are	no	AGD	evaluation	activities	for	this	component.
KMD
There	are	no	KMD	evaluation	activities	for	this	component.
Tests
No	explicit	testing	of	the	formation	of	the	submask	from	the	input	password	is	required.

For	the	NIST	SP	800-132-based	conditioning	of	the	passphrase,	the	required	evaluation	activities	will	be
performed	when	doing	the	evaluation	activities	for	the	appropriate	requirements	(FCS_COP.1/HMAC).

The	evaluator	shall	verify	that	the	iteration	count	for	PBKDFs	performed	by	the	TOE	comply	with	NIST	SP
800-132	by	ensuring	that	the	TSS	contains	a	description	of	the	estimated	time	required	to	derive	key	material
from	passwords	and	how	the	TOE	increases	the	computation	time	for	password-based	key	derivation
(including	but	not	limited	to	increasing	the	iteration	count).

FCS_COP.1/SigGen	Cryptographic	Operation	(Signature	Generation)

TSS
The	evaluator	shall	examine	the	TSS	to	ensure	that	all	signature	generation	functions	use	the	approved
algorithms	and	key	sizes.
Guidance
There	are	no	AGD	evaluation	activities	for	this	component.
KMD
There	are	no	KMD	evaluation	activities	for	this	component.
Tests
The	following	tests	require	the	developer	to	provide	access	to	a	test	platform	that	provides	the	evaluator	with
tools	that	are	typically	not	found	on	factory	products.

Each	section	below	contains	tests	the	evaluators	must	perform	for	each	selected	digital	signature	scheme.
Based	on	the	assignments	and	selections	in	the	requirement,	the	evaluators	choose	the	specific	activities	that
correspond	to	those	selections.

The	following	tests	require	the	developer	to	provide	access	to	a	test	platform	that	provides	the	evaluator	with
tools	that	are	not	found	on	the	TOE	in	its	evaluated	configuration.

If	SigGen1:	RSASSA-PKCS1-v1_5or	SigGen4:	RSASSA-PSS	is	claimed:

The	below	test	is	derived	from	The	186-4	RSA	Validation	System	(RSA2VS).	Updated	8	July	2014,	Section	6.3,
from	the	National	Institute	of	Standards	and	Technology.

To	test	the	implementation	of	RSA	signature	generation	the	evaluator	uses	the	system	under	test	to	generate
signatures	for	10	messages	for	each	combination	of	modulus	size	and	SHA	algorithm.	The	evaluator	then	uses
a	known-good	implementation	and	the	associated	public	keys	to	verify	the	signatures.

If	SigGen2:	Digital	Signature	Scheme	2	(DSS2)	or	SigGen3:	Digital	Signature	Scheme	3	(DSS3):

To	test	the	implementation	of	DSS2/3	signature	generation	the	evaluator	uses	the	system	under	test	to
generate	signatures	for	10	messages	for	each	combination	of	SHA	algorithm,	hash	size	and	key	size.	The
evaluator	them	uses	a	known-good	implementation	and	the	associated	public	keys	to	verify	the	signatures.

If	SigGen5:	ECDSA	is	claimed:

The	below	test	is	derived	from	The	FIPS	186-4	Elliptic	Curve	Digital	Signature	Algorithm	Validation	System
(ECDSA2VS).	Updated	18	March	2014,	Section	6.4,	from	the	National	Institute	of	Standards	and	Technology.

To	test	the	implementation	of	ECDSA	signature	generation	the	evaluator	uses	the	system	under	test	to
generate	signatures	for	10	messages	for	each	combination	of	curve,	SHA	algorithm,	hash	size,	and	key	size.
The	evaluator	then	uses	a	known-good	implementation	and	the	associated	public	keys	to	verify	the	signatures.

FCS_COP.1/SigVer	Cryptographic	Operation	(Signature	Verification)

TSS
The	evaluator	shall	check	the	TSS	to	ensure	that	it	describes	the	overall	flow	of	the	signature	verification.
This	should	at	least	include	identification	of	the	format	and	general	location	(e.g.,	"firmware	on	the	hard	drive
device"	rather	than	“memory	location	0x00007A4B")	of	the	data	to	be	used	in	verifying	the	digital	signature;
how	the	data	received	from	the	operational	environment	are	brought	onto	the	device;	and	any	processing	that
is	performed	that	is	not	part	of	the	digital	signature	algorithm	(for	instance,	checking	of	certificate	revocation
lists).
Guidance
There	are	no	AGD	evaluation	activities	for	this	component.
KMD
There	are	no	KMD	evaluation	activities	for	this	component.
Tests
The	following	tests	require	the	developer	to	provide	access	to	a	test	platform	that	provides	the	evaluator	with
tools	that	are	typically	not	found	on	factory	products.

Each	section	below	contains	tests	the	evaluators	must	perform	for	each	selected	digital	signature	scheme.
Based	on	the	assignments	and	selections	in	the	requirement,	the	evaluators	choose	the	specific	activities	that
correspond	to	those	selections.

The	following	tests	require	the	developer	to	provide	access	to	a	test	platform	that	provides	the	evaluator	with
tools	that	are	not	found	on	the	TOE	in	its	evaluated	configuration.

SigVer1:	RSASSA-PKCS1-v1_5	and	SigVer4:	RSASSA-PSS

These	tests	are	derived	from	The	186-4	RSA	Validation	System	(RSA2VS),	updated	8	Jul	2014,	Section	6.4.

The	FIPS	186-4	RSA	Signature	Verification	Test	tests	the	ability	of	the	TSF	to	recognize	valid	and	invalid
signatures.	The	evaluator	shall	provide	a	modulus	and	three	associated	key	pairs	(d,	e)	for	each	combination
of	selected	SHA	algorithm,	modulus	size	and	hash	size.	Each	private	key	d	is	used	to	sign	six	pseudorandom
messages	each	of	1024	bits.	For	five	of	the	six	messages,	the	public	key	(e),	message,	IR	format,	padding,	or
signature	is	altered	so	that	signature	verification	should	fail.	The	test	passes	only	if	all	the	signatures	made
using	unaltered	parameters	result	in	successful	signature	verification,	and	all	the	signatures	made	using
altered	parameters	result	in	unsuccessful	signature	verification.

SigVer5:	ECDSA	on	NIST	and	Brainpool	Curves

These	tests	are	derived	from	The	FIPS	186-4	Elliptic	Curve	Digital	Signature	Algorithm	Validation	System
(ECDSA2VS),	updated	18	Mar	2014,	Section	6.5.

The	FIPS	186-4	ECC	Signature	Verification	Test	tests	the	ability	of	the	TSF	to	recognize	valid	and	invalid
signatures.	The	evaluator	shall	provide	a	modulus	and	associated	key	pair	(x,	y)	for	each	combination	of
selected	curve,	SHA	algorithm,	modulus	size,	and	hash	size.	Each	private	key	(x)	is	used	to	sign	15
pseudorandom	messages	of	1024	bits.	For	eight	of	the	fifteen	messages,	the	message,	IR	format,	padding,	or
signature	is	altered	so	that	signature	verification	should	fail.	The	test	passes	only	if	all	the	signatures	made
using	unaltered	parameters	result	in	successful	signature	verification,	and	all	the	signatures	made	using
altered	parameters	result	in	unsuccessful	signature	verification.

SigVer2:	Digital	Signature	Scheme	2

The	following	or	equivalent	steps	shall	be	taken	to	test	the	TSF.

For	each	supported	modulus	size,	underlying	hash	algorithm,	and	length	of	the	trailer	field	(1-	or	2-byte),	the
evaluator	shall	generate	NT	sets	of	recoverable	message	(M1),	non-recoverable	message	(M2),	salt,	public
key	and	signature	(Σ).

1.	 NT	shall	be	greater	than	or	equal	to	20.
2.	 The	length	of	salts	shall	be	selected	from	its	supported	length	range	of	salt.	The	typical	length	of	salt	is

equal	to	the	output	block	length	of	underlying	hash	algorithm	(see	9.2.2	of	ISO/IEC	9796-2:2010).
3.	 The	length	of	recoverable	messages	should	be	selected	by	considering	modulus	size,	output	block	length

of	underlying	hash	algorithm,	and	length	of	salt	(LS).	As	described	in	Annex	D	of	ISO/IEC	9796-2:2010,	it
is	desirable	to	maximise	the	length	of	recoverable	message.	The	following	table	shows	the	maximum	bit-
length	of	recoverable	message	that	is	divisible	by	512,	for	some	combinations	of	modulus	size,
underlying	hash	algorithm,	and	length	of	salt.	None	that	2-byte	trailer	field	is	assumed	in	calculating	the
maximum	length	of	recoverable	message

Maximum	length	of
recoverable	message
divisible	by	512	(bits)

Modulus
size
(bits)

Underlying
hash
algorithm
(bits)

Length
of	salt
LS
(bits)

1536

2048

SHA-256
128

1024 256

1024

SHA-512

128

1024 256

512 512

2560

3072

SHA-256
128

2048 256

2048

SHA-512

128

2048 256

1536 512

4.	 The	length	of	non-recoverable	messages	should	be	selected	by	considering	the	underlying	hash
algorithm	and	usages.	If	the	TSF	is	used	for	verifying	the	authenticity	of	software/firmware	updates,	the
length	of	non-recoverable	messages	should	be	selected	greater	than	or	equal	to	2048-bit.	With	this
length	range,	it	means	that	the	underlying	hash	algorithm	is	also	tested	for	two	or	more	input	blocks.

5.	 The	evaluator	shall	select	approximately	one	half	of	NT	sets	and	shall	alter	one	of	the	values	(non-
recoverable	message,	public	key	exponent	or	signature)	in	the	sets.	In	altering	public	key	exponent,	the
evaluator	shall	alter	the	public	key	exponent	while	keeping	the	exponent	odd.	In	altering	signatures,	the
following	ways	should	be	considered:
a.	 Altering	a	signature	just	by	replacing	a	bit	in	the	bit-string	representation	of	the	signature
b.	 Altering	a	signature	so	that	the	trailer	in	the	message	representative	cannot	be	interpreted.	This

can	be	achieved	by	following	ways:
Setting	the	rightmost	four	bits	of	the	message	representative	to	the	values	other	than	'1100'.

In	the	case	when	1-byte	trailer	is	used,	setting	the	rightmost	byte	of	the	message
representative	to	the	values	other	than	'0xbc',	while	keeping	the	rightmost	four	bits	to	'1100'.
In	the	case	when	2-byte	trailer	is	used,	setting	the	rightmost	byte	of	the	message
representative	to	the	values	other	than	'0xcc',	while	keeping	the	rightmost	four	bits	to	'1100'.

c.	 In	the	case	when	2-byte	trailer	is	used,	altering	a	signature	so	that	the	hash	algorithm	identifier	in
the	trailer	(i.e.	the	left	most	byte	of	the	trailer)	does	not	correspond	to	hash	algorithms	identified	in
the	SFR.	The	hash	algorithm	identifiers	are	0x34	for	SHA-256	(see	Clause	10	of	ISO/IEC	10118-
3:2018),	and	0x35	for	SHA-512	(see	Clause	11	of	ISO/IEC	10118-3:2018).

d.	 Let	LS	be	the	length	of	salt,	altering	a	signature	so	that	the	intermediate	bit	string	D	in	the	message
representative	is	set	to	all	zeroes	except	for	the	rightmost	LS	bits	of	D.

e.	 (non-conformant	signature	length)	Altering	a	signature	so	that	the	length	of	signature	Σ	is	changed
to	modulus	size	and	the	most	significant	bit	of	signature	Σ	is	set	equal	to	'1'.

f.	 (non-conformant	signature)	Altering	a	signature	so	that	the	integer	converted	from	signature	Σ	is
greater	than	modulus	n.

The	evaluator	shall	supply	the	NT	sets	to	the	TSF	and	obtain	in	response	a	set	of	NT	Verification-Success	or
Verification-Fail	values.	When	the	VerificationSuccess	is	obtained,	the	evaluator	shall	also	obtain	recovered
message	(M	1*).

The	evaluator	shall	verify	that	Verification-Success	results	correspond	to	the	unaltered	sets	and	Verification-
Fail	results	correspond	to	the	altered	sets.

For	each	recovered	message,	the	evaluator	shall	compare	the	recovered	message	(M1*)	with	the
corresponding	recoverable	message	(M	1)	in	the	unaltered	sets.

The	test	passes	only	if	all	the	signatures	made	using	unaltered	sets	result	in	Verification-Success,	each
recovered	message	(M	1*)	is	equal	to	corresponding	M	1	in	the	unaltered	sets,	and	all	the	signatures	made
using	altered	sets	result	in	Verification-Fail.

SigVer3:	Digital	Signature	Scheme	3

The	evaluator	shall	perform	the	test	described	in	SigVer2:	Digital	Signature	Scheme	2	while	using	a	fixed	salt
for	NT	sets.

FCS_COP.1/SKC	Cryptographic	Operation	(Symmetric	Key	Cryptography)

TSS
The	evaluator	shall	check	that	the	TSS	includes	a	description	of	encryption	functions	used	for	symmetric	key
encryption.	The	evaluator	should	check	that	this	description	of	the	selected	encryption	function	includes	the
key	sizes	and	modes	of	operations	as	specified	in	the	cPP	table	9	“Supported	Methods	for	Symmetric	Key
Cryptography	Operation.”

The	evaluator	shall	check	that	the	TSS	describes	the	means	by	which	the	TOE	satisfies	constraints	on
algorithm	parameters	included	in	the	selections	made	for	‘cryptographic	algorithm’	and	‘list	of	standards’.

Guidance
If	the	product	supports	multiple	modes,	the	evaluator	shall	examine	the	vendor’s	documentation	to	determine
that	the	method	of	choosing	a	specific	mode/key	size	by	the	end	user	is	described.
KMD
The	evaluator	shall	examine	the	KMD	to	ensure	that	the	points	at	which	symmetric	key	encryption	and
decryption	occurs	are	described,	and	that	the	complete	data	path	for	symmetric	key	encryption	is	described.
The	evaluator	checks	that	this	description	is	consistent	with	the	relevant	parts	of	the	TSS.

Assessment	of	the	complete	data	path	for	symmetric	key	encryption	includes	confirming	that	the	KMD
describes	the	data	flow	from	the	device’s	host	interface	to	the	device’s	non-volatile	memory	storing	the	data,
and	gives	information	enabling	the	user	data	datapath	to	be	distinguished	from	those	situations	in	which	data
bypasses	the	data	encryption	engine	(e.g.	read-write	operations	to	an	unencrypted	Master	Boot	Record	area).
The	evaluator	shall	ensure	that	the	documentation	of	the	data	path	is	detailed	enough	that	it	thoroughly
describes	the	parts	of	the	TOE	that	the	data	passes	through	(e.g.	different	memory	types,	processors	and	co-
processors),	its	encryption	state	(i.e.	encrypted	or	unencrypted)	in	each	part,	and	any	places	where	the	data	is
stored.	For	example,	any	caching	or	buffering	of	the	data	should	be	identified	and	distinguished	from	the	final
destination	in	non-volatile	memory	(the	latter	represents	the	location	from	which	the	host	will	expect	to
retrieve	the	data	in	future).

If	support	for	AES-CTR	is	claimed	and	the	counter	value	source	is	internal	to	the	TOE,	the	evaluator	shall
verify	that	the	KMD	describes	the	internal	counter	mechanism	used	to	ensure	that	it	provides	unique	counter
block	values.

Tests
The	following	tests	require	the	developer	to	provide	access	to	a	test	platform	that	provides	the	evaluator	with
tools	that	are	typically	not	found	on	factory	products.

The	following	tests	are	conditional	based	upon	the	selections	made	in	the	SFR.	The	evaluator	shall	perform
the	following	test	or	witness	respective	tests	executed	by	the	developer.	The	tests	must	be	executed	on	a
platform	that	is	as	close	as	practically	possible	to	the	operational	platform	(but	which	may	be	instrumented	in
terms	of,	for	example,	use	of	a	debug	mode).	Where	the	test	is	not	carried	out	on	the	TOE	itself,	the	test
platform	shall	be	identified	and	the	differences	between	test	environment	and	TOE	execution	environment
shall	be	described.

Preconditions	for	testing:

Specification	of	keys	as	input	parameter	to	the	function	to	be	tested

specification	of	required	input	parameters	such	as	modes
Specification	of	user	data	(plaintext)
Tapping	of	encrypted	user	data	(ciphertext)	directly	in	the	non-volatile	memory

AES-CBC:
For	the	AES-CBC	tests	described	below,	the	plaintext,	ciphertext,	and	IV	values	shall	consist	of	128-bit	blocks.
To	determine	correctness,	the	evaluator	shall	compare	the	resulting	values	to	those	obtained	by	submitting
the	same	inputs	to	a	known-good	implementation.

These	tests	are	intended	to	be	equivalent	to	those	described	in	NIST’s	AES	Algorithm	Validation	Suite
(AESAVS)	(http://csrc.nist.gov/groups/STM/cavp/documents/aes/AESAVS.pdf).	It	is	not	recommended	that
evaluators	use	values	obtained	from	static	sources	such	as	the	example	NIST’s	AES	Known	Answer	Test
Values	from	the	AESAVS	document,	or	use	values	not	generated	expressly	to	exercise	the	AES-CBC
implementation.

AES-CBC	Known	Answer	Tests

KAT-1	(GFSBox):	To	test	the	encrypt	functionality	of	AES-CBC,	the	evaluator	shall	supply	a	set	of	five
different	plaintext	values	for	each	selected	key	size	and	obtain	the	ciphertext	value	that	results	from	AES-CBC
encryption	of	the	given	plaintext	using	a	key	value	of	all	zeros	and	an	IV	of	all	zeros.

To	test	the	decrypt	functionality	of	AES-CBC,	the	evaluator	shall	supply	a	set	of	five	different	ciphertext
values	for	each	selected	key	size	and	obtain	the	plaintext	value	that	results	from	AES-CBC	decryption	of	the
given	ciphertext	using	a	key	value	of	all	zeros	and	an	IV	of	all	zeros.

KAT-2	(KeySBox):	To	test	the	encrypt	functionality	of	AES-CBC,	the	evaluator	shall	supply	a	set	of	five
different	key	values	for	each	selected	key	size	and	obtain	the	ciphertext	value	that	results	from	AES-CBC
encryption	of	an	all-zeros	plaintext	using	the	given	key	value	and	an	IV	of	all	zeros.

To	test	the	decrypt	functionality	of	AES-CBC,	the	evaluator	shall	supply	a	set	of	five	different	key	values	for
each	selected	key	size	and	obtain	the	plaintext	that	results	from	AES-CBC	decryption	of	an	all-zeros
ciphertext	using	the	given	key	and	an	IV	of	all	zeros.

KAT-3	(Variable	Key):	To	test	the	encrypt	functionality	of	AES-CBC,	the	evaluator	shall	supply	a	set	of	keys	for
each	selected	key	size	(as	described	below)	and	obtain	the	ciphertext	value	that	results	from	AES	encryption
of	an	all-zeros	plaintext	using	each	key	and	an	IV	of	all	zeros.

Key	i	in	each	set	shall	have	the	leftmost	i	bits	set	to	ones	and	the	remaining	bits	to	zeros,	for	values	of	i	from	1
to	the	key	size.	The	keys	and	corresponding	ciphertext	are	listed	in	AESAVS,	Appendix	E.

To	test	the	decrypt	functionality	of	AES-CBC,	the	evaluator	shall	use	the	same	keys	as	above	to	decrypt	the
ciphertext	results	from	above.	Each	decryption	should	result	in	an	all-zeros	plaintext.

KAT-4	(Variable	Text):	To	test	the	encrypt	functionality	of	AES-CBC,	for	each	selected	key	size,	the	evaluator
shall	supply	a	set	of	128-bit	plaintext	values	(as	described	below)	and	obtain	the	ciphertext	values	that	result
from	AES-CBC	encryption	of	each	plaintext	value	using	a	key	of	each	size	and	IV	consisting	of	all	zeros.

Plaintext	value	i	shall	have	the	leftmost	i	bits	set	to	ones	and	the	remaining	bits	set	to	zeros,	for	values	of	i
from	1	to	128.	The	plaintext	values	are	listed	in	AESAVS,	Appendix	D.

To	test	the	decrypt	functionality	of	AES-CBC,	for	each	selected	key	size,	use	the	plaintext	values	from	above
as	ciphertext	input,	and	AES-CBC	decrypt	each	ciphertext	value	using	key	of	each	size	consisting	of	all	zeros
and	an	IV	of	all	zeros.

AES-CBC	Multi-Block	Message	Test

The	evaluator	shall	test	the	encrypt	functionality	by	encrypting	nine	i-block	messages	for	each	selected	key
size,	for	2	≤	i	≤	10.	For	each	test,	the	evaluator	shall	supply	a	key,	an	IV,	and	a	plaintext	message	of	length	i
blocks,	and	encrypt	the	message	using	AES-CBC.	The	resulting	ciphertext	values	shall	be	compared	to	the
results	of	encrypting	the	plaintext	messages	using	a	known	good	implementation.

The	evaluator	shall	test	the	decrypt	functionality	by	decrypting	nine	i-block	messages	for	each	selected	key
size,	for	2	≤	i	≤	10.	For	each	test,	the	evaluator	shall	supply	a	key,	an	IV,	and	a	ciphertext	message	of	length	i
blocks,	and	decrypt	the	message	using	AES-CBC.	The	resulting	plaintext	values	shall	be	compared	to	the
results	of	decrypting	the	ciphertext	messages	using	a	known	good	implementation.

AES-CBC	Monte	Carlo	Tests

The	evaluator	shall	test	the	encrypt	functionality	for	each	selected	key	size	using	100	3-tuples	of	pseudo-
random	values	for	plaintext,	IVs,	and	keys.

The	evaluator	shall	supply	a	single	3-tuple	of	pseudo-random	values	for	each	selected	key	size.	This	3-tuple	of
plaintext,	IV,	and	key	is	provided	as	input	to	the	below	algorithm	to	generate	the	remaining	99	3-tuples,	and
to	run	each	3-tuple	through	1000	iterations	of	AES-CBC	encryption.

	 	 	 	 	 	 #	Input:	PT,	IV,	Key
	 	 	 	 	 	 Key[0]	=	Key
	 	 	 	 	 	 IV[0]	=	IV
	 	 	 	 	 	 PT[0]	=	PT
	 	 	 	 	 	 for	i	=	0	to	99	{
	 	 	 	 	 	 	 Output	Key[i],	IV[i],	PT[0]
	 	 	 	 	 	 	 for	j	=	0	to	999	{
	 	 	 	 	 	 	 	 if	(j	==	0)	{
	 	 	 	 	 	 	 	 	 CT[j]	=	AES-CBC-Encrypt(Key[i],	IV[i],	PT[j])
	 	 	 	 	 	 	 	 	 PT[j+1]	=	IV[i]

http://csrc.nist.gov/groups/STM/cavp/documents/aes/AESAVS.pdf

	 	 	 	 	 	 	 	 }	else	{
	 	 	 	 	 	 	 	 	 CT[j]	=	AES-CBC-Encrypt(Key[i],	PT[j])
	 	 	 	 	 	 	 	 	 PT[j+1]	=	CT[j-1]
	 	 	 	 	 	 	 	 }
	 	 	 	 	 	 	 }
	 	 	 	 	 	 	 Output	CT[j]
	 	 	 	 	 	 	 If	(KeySize	==	128)	Key[i+1]	=	Key[i]	xor	CT[j]	
	 	 	 	 	 	 	 If	(KeySize	==	192)	Key[i+1]	=	Key[i]	xor	(last	64	bits	of	CT[j-1]	||	CT[j])
	 	 	 	 	 	 	 If	(KeySize	==	256)	Key[i+1]	=	Key[i]	xor	((CT[j-1]	|	CT[j])
	 	 	 	 	 	 	 IV[i+1]	=	CT[j]
	 	 	 	 	 	 	 PT[0]	=	CT[j-1]
	 	 	 	 	 	 }
	 	 	 	 	

The	ciphertext	computed	in	the	1000th	iteration	(CT[999])	is	the	result	for	each	of	the	100	3-tuples	for	each
selected	key	size.	This	result	shall	be	compared	to	the	result	of	running	1000	iterations	with	the	same	values
using	a	known	good	implementation.

The	evaluator	shall	test	the	decrypt	functionality	using	the	same	test	as	above,	exchanging	CT	and	PT,	and
replacing	AES-CBC-Encrypt	with	AES-CBC-Decrypt.

AES-CCM:

These	tests	are	intended	to	be	equivalent	to	those	described	in	the	NIST	document,	“The	CCM	Validation
System	(CCMVS),”	updated	9	Jan	2012,	found	at
http://csrc.nist.gov/groups/STM/cavp/documents/mac/CCMVS.pdf.

It	is	not	recommended	that	evaluators	use	values	obtained	from	static	sources	such	as
http://csrc.nist.gov/groups/STM/cavp/documents/mac/ccmtestvectors.zip	or	use	values	not	generated
expressly	to	exercise	the	AES-CCM	implementation.

The	evaluator	shall	test	the	generation-encryption	and	decryption-verification	functionality	of	AES-CCM	for
the	following	input	parameter	and	tag	lengths:

Keys:	All	supported	and	selected	key	sizes	(e.g.,	128,	192,	or	256	bits).
Associated	Data:	Two	or	three	values	for	associated	data	length:	The	minimum	(≥	0	bytes)	and
maximum	(≤	32	bytes)	supported	associated	data	lengths,	and	2^16	(65536)	bytes,	if	supported.
Payload:	Two	values	for	payload	length:	The	minimum	(≥	0	bytes)	and	maximum	(≤	32	bytes)	supported
payload	lengths.
Nonces:	All	supported	nonce	lengths	(e.g.,	8,	9,	10,	11,	12,	13)	in	bytes.
Tag:	All	supported	tag	lengths	(e.g.,	4,	6,	8,	10,	12,	14,	16)	in	bytes.

The	testing	for	CCM	consists	of	five	tests.	To	determine	correctness	in	each	of	the	below	tests,	the	evaluator
shall	compare	the	ciphertext	with	the	result	of	encryption	of	the	same	inputs	with	a	known	good
implementation.

Variable	Associated	Data	Test:	For	each	supported	key	size	and	associated	data	length,	and	any	supported
payload	length,	nonce	length,	and	tag	length,	the	evaluator	shall	supply	one	key	value,	one	nonce	value,	and
10	pairs	of	associated	data	and	payload	values,	and	obtain	the	resulting	ciphertext.

Variable	Payload	Text:	For	each	supported	key	size	and	payload	length,	and	any	supported	associated	data
length,	nonce	length,	and	tag	length,	the	evaluator	shall	supply	one	key	value,	one	nonce	value,	and	10	pairs
of	associated	data	and	payload	values,	and	obtain	the	resulting	ciphertext.

Variable	Nonce	Test:	For	each	supported	key	size	and	nonce	length,	and	any	supported	associated	data
length,	payload	length,	and	tag	length,	the	evaluator	shall	supply	one	key	value,	one	nonce	value,	and	10	pairs
of	associated	data	and	payload	values,	and	obtain	the	resulting	ciphertext.

Variable	Tag	Test:	For	each	supported	key	size	and	tag	length,	and	any	supported	associated	data	length,
payload	length,	and	nonce	length,	the	evaluator	shall	supply	one	key	value,	one	nonce	value,	and	10	pairs	of
associated	data	and	payload	values,	and	obtain	the	resulting	ciphertext.

Decryption-Verification	Process	Test:	To	test	the	decryption-verification	functionality	of	AES-CCM,	for	each
combination	of	supported	associated	data	length,	payload	length,	nonce	length,	and	tag	length,	the	evaluator
shall	supply	a	key	value	and	15	sets	of	input	plus	ciphertext,	and	obtain	the	decrypted	payload.	Ten	of	the	15
input	sets	supplied	should	fail	verification	and	five	should	pass.

AES-GCM:	These	tests	are	intended	to	be	equivalent	to	those	described	in	the	NIST	document,	“The
Galois/Counter	Mode	(GCM)	and	GMAC	Validation	System	(GCMVS)	with	the	Addition	of	XPN	Validation
Testing,”	rev.	15	Jun	2016,	section	6.2,	found	at
http://csrc.nist.gov/groups/STM/cavp/documents/mac/gcmvs.pdf.

It	is	not	recommended	that	evaluators	use	values	obtained	from	static	sources	such	as
http://csrc.nist.gov/groups/STM/cavp/documents/mac/gcmtestvectors.zip,	or	use	values	not	generated
expressly	to	exercise	the	AES-GCM	implementation.

The	evaluator	shall	test	the	authenticated	encryption	functionality	of	AES-GCM	by	supplying	15	sets	of	Key,
Plaintext,	AAD,	IV,	and	Tag	data	for	every	combination	of	the	following	parameters	as	selected	in	the	ST	and
supported	by	the	implementation	under	test:

Key	size	in	bits:	Each	selected	and	supported	key	size	(e.g.,	128,	192,	or	256	bits).
Plaintext	length	in	bits:	Up	to	four	values	for	plaintext	length:	Two	values	that	are	non-zero	integer
multiples	of	128,	if	supported.	And	two	values	that	are	non-multiples	of	128,	if	supported.
AAD	length	in	bits:	Up	to	five	values	for	AAD	length:	Zero-length,	if	supported.	Two	values	that	are

http://csrc.nist.gov/groups/STM/cavp/documents/mac/CCMVS.pdf
http://csrc.nist.gov/groups/STM/cavp/documents/mac/gcmvs.pdf

non-zero	integer	multiples	of	128,	if	supported.	And	two	values	that	are	integer	non-multiples	of	128,	if
supported.
IV	length	in	bits:	Up	to	three	values	for	IV	length:	96	bits.	Minimum	and	maximum	supported	lengths,
if	different.
MAC	length	in	bits:	Each	supported	length	(e.g.,	128,	120,	112,	104,	96).

To	determine	correctness,	the	evaluator	shall	compare	the	resulting	values	to	those	obtained	by	submitting
the	same	inputs	to	a	known-good	implementation.

The	evaluator	shall	test	the	authenticated	decrypt	functionality	of	AES-GCM	by	supplying	15	Ciphertext-Tag
pairs	for	every	combination	of	the	above	parameters,	replacing	Plaintext	length	with	Ciphertext	length.	For
each	parameter	combination	the	evaluator	shall	introduce	an	error	into	either	the	Ciphertext	or	the	Tag	such
that	approximately	half	of	the	cases	are	correct	and	half	the	cases	contain	errors.	To	determine	correctness,
the	evaluator	shall	compare	the	resulting	pass/fail	status	and	Plaintext	values	to	the	results	obtained	by
submitting	the	same	inputs	to	a	known-good	implementation.

AES-CTR:

For	the	AES-CTR	tests	described	below,	the	plaintext	and	ciphertext	values	shall	consist	of	128-bit	blocks.	To
determine	correctness,	the	evaluator	shall	compare	the	resulting	values	to	those	obtained	by	submitting	the
same	inputs	to	a	known-good	implementation.

These	tests	are	intended	to	be	equivalent	to	those	described	in	NIST’s	AES	Algorithm	Validation	Suite
(AESAVS)	(http://csrc.nist.gov/groups/STM/cavp/documents/aes/AESAVS.pdf).	It	is	not	recommended	that
evaluators	use	values	obtained	from	static	sources	such	as	the	example	NIST’s	AES	Known	Answer	Test
Values	from	the	AESAVS	document,	or	use	values	not	generated	expressly	to	exercise	the	AES-CTR
implementation.

AES-CTR	Known	Answer	Tests

KAT-1	(GFSBox):	To	test	the	encrypt	functionality	of	AES-CTR,	the	evaluator	shall	supply	a	set	of	five	different
plaintext	values	for	each	selected	key	size	and	obtain	the	ciphertext	value	that	results	from	AES-CTR
encryption	of	the	given	plaintext	using	a	key	value	of	all	zeros.

To	test	the	decrypt	functionality	of	AES-CTR,	the	evaluator	shall	supply	a	set	of	five	different	ciphertext
values	for	each	selected	key	size	and	obtain	the	plaintext	value	that	results	from	AES-CTR	decryption	of	the
given	ciphertext	using	a	key	value	of	all	zeros.

KAT-2	(KeySBox):	To	test	the	encrypt	functionality	of	AES-CTR,	the	evaluator	shall	supply	a	set	of	five
different	key	values	for	each	selected	key	size	and	obtain	the	ciphertext	value	that	results	from	AES-CTR
encryption	of	an	all-zeros	plaintext	using	the	given	key	value.

To	test	the	decrypt	functionality	of	AES-CTR,	the	evaluator	shall	supply	a	set	of	five	different	key	values	for
each	selected	key	size	and	obtain	the	plaintext	that	results	from	AES-CTR	decryption	of	an	all-zeros
ciphertext	using	the	given	key.

KAT-3	(Variable	Key):	To	test	the	encrypt	functionality	of	AES-CTR,	the	evaluator	shall	supply	a	set	of	keys	for
each	selected	key	size	(as	described	below)	and	obtain	the	ciphertext	value	that	results	from	AES	encryption
of	an	all-zeros	plaintext	using	each	key.

Key	i	in	each	set	shall	have	the	leftmost	i	bits	set	to	ones	and	the	remaining	bits	to	zeros,	for	values	of	i	from	1
to	the	key	size.	The	keys	and	corresponding	ciphertext	are	listed	in	AESAVS,	Appendix	E.

To	test	the	decrypt	functionality	of	AES-CTR,	the	evaluator	shall	use	the	same	keys	as	above	to	decrypt	the
ciphertext	results	from	above.	Each	decryption	should	result	in	an	all-zeros	plaintext.

KAT-4	(Variable	Text):	To	test	the	encrypt	functionality	of	AES-CTR,	for	each	selected	key	size,	the	evaluator
shall	supply	a	set	of	128-bit	plaintext	values	(as	described	below)	and	obtain	the	ciphertext	values	that	result
from	AES-CTR	encryption	of	each	plaintext	value	using	a	key	of	each	size.

Plaintext	value	i	shall	have	the	leftmost	i	bits	set	to	ones	and	the	remaining	bits	set	to	zeros,	for	values	of	i
from	1	to	128.	The	plaintext	values	are	listed	in	AESAVS,	Appendix	D.

To	test	the	decrypt	functionality	of	AES-CTR,	for	each	selected	key	size,	use	the	plaintext	values	from	above
as	ciphertext	input,	and	AES-CTR	decrypt	each	ciphertext	value	using	key	of	each	size	consisting	of	all	zeros.

AES-CTR	Multi-Block	Message	Test

The	evaluator	shall	test	the	encrypt	functionality	by	encrypting	nine	i-block	messages	for	each	selected	key
size,	for	2	≤	i	≤	10.	For	each	test,	the	evaluator	shall	supply	a	key	and	a	plaintext	message	of	length	i	blocks,
and	encrypt	the	message	using	AES-CTR.	The	resulting	ciphertext	values	shall	be	compared	to	the	results	of
encrypting	the	plaintext	messages	using	a	known	good	implementation.

The	evaluator	shall	test	the	decrypt	functionality	by	decrypting	nine	i-block	messages	for	each	selected	key
size,	for	2	≤	i	≤	10.	For	each	test,	the	evaluator	shall	supply	a	key	and	a	ciphertext	message	of	length	i
blocks,	and	decrypt	the	message	using	AES-CTR.	The	resulting	plaintext	values	shall	be	compared	to	the
results	of	decrypting	the	ciphertext	messages	using	a	known	good	implementation.

AES-CTR	Monte	Carlo	Tests

The	evaluator	shall	test	the	encrypt	functionality	for	each	selected	key	size	using	100	2-tuples	of	pseudo-
random	values	for	plaintext	and	keys.

The	evaluator	shall	supply	a	single	2-tuple	of	pseudo-random	values	for	each	selected	key	size.	This	2-tuple	of

http://csrc.nist.gov/groups/STM/cavp/documents/aes/AESAVS.pdf

plaintext	and	key	is	provided	as	input	to	the	below	algorithm	to	generate	the	remaining	99	2-tuples,	and	to
run	each	2-tuple	through	1000	iterations	of	AES-CTR	encryption.

	 	 	 	 	 	 #	Input:	PT,	Key
	 	 	 	 	 	 Key[0]	=	Key
	 	 	 	 	 	 PT[0]	=	PT
	 	 	 	 	 	 for	i	=	0	to	99	{
	 	 	 	 	 	 	 Output	Key[i],	PT[0]
	 	 	 	 	 	 	 for	j	=	0	to	999	{
	 	 	 	 	 	 	 	 CT[j]	=	AES-CTR-Encrypt(Key[i],	PT[j])
	 	 	 	 	 	 	 	 PT[j+1]	=	CT[j]
	 	 	 	 	 	 	 }
	 	 	 	 	 	 	 Output	CT[j]
	 	 	 	 	 	 	 If	(KeySize	==	128)	Key[i+1]	=	Key[i]	xor	CT[j]
	 	 	 	 	 	 	 If	(KeySize	==	192)	Key[i+1]	=	Key[i]	xor	(last	64	bits	of	CT[j-1]	||	CT[j])
	 	 	 	 	 	 	 If	(KeySize	==	256)	Key[i+1]	=	Key[i]	xor	((CT[j-1]	|	CT[j])
	 	 	 	 	 	 	 PT[0]	=	CT[j]
	 	 	 	 	 	 }
	 	 	 	 	

The	ciphertext	computed	in	the	1000th	iteration	(CT[999])	is	the	result	for	each	of	the	100	2-tuples	for	each
selected	key	size.	This	result	shall	be	compared	to	the	result	of	running	1000	iterations	with	the	same	values
using	a	known	good	implementation.

The	evaluator	shall	test	the	decrypt	functionality	using	the	same	test	as	above,	exchanging	CT	and	PT,	and
replacing	AES-CTR-Encrypt	with	AES-CTR-Decrypt.	198	Note	additional	design	considerations	for	this	mode
are	addressed	in	the	KMD	requirements.

XTS-AES:	These	tests	are	intended	to	be	equivalent	to	those	described	in	the	NIST	document,	“The	XTS-AES
Validation	System	(XTSVS),”	updated	5	Sept	2013,	found	at
http://csrc.nist.gov/groups/STM/cavp/documents/aes/XTSVS.pdf

It	is	not	recommended	that	evaluators	use	values	obtained	from	static	sources	such	as	the	XTS-AES	test
vectors	at	http://csrc.nist.gov/groups/STM/cavp/documents/aes/XTSTestVectors.zip	or	use	values	not
generated	expressly	to	exercise	the	XTS-AES	implementation.

The	evaluator	shall	generate	test	values	as	follows:

For	each	supported	key	size	(256	bit	(for	AES-128)	and	512	bit	(for	AES-256)	keys),	the	evaluator	shall
provide	up	to	five	data	lengths:

Two	data	lengths	divisible	by	the	128-bit	block	size,	If	data	unit	lengths	of	complete	block	sizes	are
supported.
Two	data	lengths	not	divisible	by	the	128-bit	block	size,	if	data	unit	lengths	of	partial	block	sizes	are
supported.
The	largest	data	length	supported	by	the	implementation,	or	2^16	(65536),	whichever	is	larger.

The	evaluator	shall	specify	whether	the	implementation	supports	tweak	values	of	128-bit	hexadecimal	strings
or	a	data	unit	sequence	numbers,	or	both.

For	each	combination	of	key	size	and	data	length,	the	evaluator	shall	provide	100	sets	of	input	data	and
obtain	the	ciphertext	that	results	from	XTS-AES	encryption.	If	both	kinds	of	tweak	values	are	supported	then
each	type	of	tweak	value	shall	be	used	in	half	of	every	100	sets	of	input	data,	for	all	combinations	of	key	size
and	data	length.	The	evaluator	shall	verify	that	the	resulting	ciphertext	matches	the	results	from	submitting
the	same	inputs	to	a	known-good	implementation	of	XTS-AES.

The	evaluator	shall	test	the	decrypt	functionality	of	XTS-AES	using	the	same	test	as	for	encrypt,	replacing
plaintext	values	with	ciphertext	values	and	XTS-AES	encrypt	with	XTS-	AES	decrypt.

The	evaluator	shall	check	that	the	full	length	keys	are	created	by	methods	that	ensure	that	the	two	halves	are
different	and	independent.

AES-KWP:

The	tests	below	are	derived	from	“The	Key	Wrap	Validation	System	(KWVS),	Updated:	June	20,	2014”	from
the	National	Institute	of	Standards	and	Technology.

The	evaluator	shall	test	the	authenticated-encryption	functionality	of	AES-KWP	(KWP-AE)	using	the	same	test
as	for	AES-KW	authenticated-encryption	with	the	following	change	in	the	five	plaintext	lengths:

Four	lengths	that	are	multiples	of	8	bits
The	largest	supported	length	less	than	or	equal	to	4096	bits.

The	evaluator	shall	test	the	authenticated-decryption	(KWP-AD)	functionality	of	AES-KWP	using	the	same	test
as	for	AES-KWP	authenticated-encryption,	replacing	plaintext	values	with	ciphertext	values	and	AES-KWP
authenticatedencryption	with	AES-KWP	authenticated-decryption.	For	the	Authenticated	Decryption	test,	20
out	of	the	100	trials	per	plaintext	length	have	ciphertext	values	that	fail	authentication.

Additionally,	the	evaluator	shall	perform	the	following	negative	tests:

Test	1:	(invalid	plaintext	length):

Determine	the	valid	plaintext	lengths	of	the	implementation	from	the	TOE	specification.	Verify	that	the
implementation	of	KWP-AE	in	the	TOE	rejects	plaintexts	of	invalid	length	by	testing	plaintext	of	the	following
lengths:	1)	plaintext	with	length	greater	than	64	semi-blocks,	2)	plaintext	with	bit-length	not	divisible	by	8,
and	3)	plaintext	with	length	0.

http://csrc.nist.gov/groups/STM/cavp/documents/aes/XTSVS.pdf

Test	2:	(invalid	ciphertext	length):	Determine	the	valid	ciphertext	lengths	of	the	implementation	from	the
TOE	specification.	Verify	that	the	implementation	of	KWP-AD	in	the	TOE	rejects	ciphertexts	of	invalid	length
by	testing	ciphertext	of	the	following	lengths:	1)	ciphertext	with	length	greater	than	65	semi-blocks,	2)
ciphertext	with	bit-length	not	divisible	by	64,	3)	ciphertext	with	length	0,	and	4)	ciphertext	with	length	of	one
semi-block.

Test	3:	(invalid	ICV2):	Test	that	the	implementation	detects	invalid	ICV2	values	by	encrypting	any	plaintext
value	four	times	using	a	different	value	for	ICV2	each	time	as	follows:	Start	with	a	base	ICV2	of	0xA65959A6.
For	each	of	the	four	tests	change	a	different	byte	of	ICV2	to	a	different	value,	so	that	each	of	the	four	bytes	is
changed	once.	Verify	that	the	implementation	of	KWP-AD	in	the	TOE	outputs	FAIL	for	each	test.

Test	4:	(invalid	padding	length):	Generate	one	ciphertext	using	algorithm	KWP-AE	with	substring
[len(P)/8]32	of	S	replaced	by	each	of	the	following	32-bit	values,	where	len(P)	is	the	length	of	P	in	bits	and	[
]32	denotes	the	representation	of	an	integer	in	32	bits:

[0]32
[len(P)/8-8]32
[len(P)/8+8]32
[513]32.

Verify	that	the	implementation	of	KWP-AD	in	the	TOE	outputs	FAIL	on	those	inputs.

Test	5:	(invalid	padding	bits):

If	the	implementation	supports	plaintext	of	length	not	a	multiple	of	64-bits,	then

	 	 	 	 	 for	each	PAD	length	[1..7]
	 	 	 	 	 	 for	each	byte	in	PAD	set	a	zero	PAD	value;
	 	 	 	 	 	 	 replace	current	byte	by	a	non-zero	value	and	use	the	resulting	plaintext	as
	 	 	 	 	 	 	 	 input	to	algorithm	KWP-AE	to	generate	ciphertexts;
	 	 	 	 	 	 	 verify	that	the	implementation	of	KWP-AD	in	the	TOE	outputs	FAIL	on
	 	 	 	 	 	 	 	 this	input.
	 	 	 	 	

AES-KW:

The	tests	below	are	derived	from	“The	Key	Wrap	Validation	System	(KWVS),	Updated:	June	20,	2014”	from
the	National	Institute	of	Standards	and	Technology.

The	evaluator	shall	test	the	authenticated-encryption	functionality	of	AES-KW	for	each	combination	of	the
following	input	parameters:

Supported	key	lengths	selected	in	the	ST	(e.g.	128	bits,	256	bits)
Five	plaintext	lengths:

Two	lengths	that	are	non-zero	multiples	of	128	bits	(two	semi-block	lengths)
Two	lengths	that	are	odd	multiples	of	the	semi-block	length	(64	bits)
The	largest	supported	plaintext	length	less	than	or	equal	to	4096	bits.

For	each	set	of	the	above	parameters	the	evaluator	shall	generate	a	set	of	100	key	and	plaintext	pairs	and
obtain	the	ciphertext	that	results	from	AES-KW	authenticated	encryption.	To	determine	correctness,	the
evaluator	shall	compare	the	results	with	those	obtained	from	the	AES-KW	authenticated-encryption	function
of	a	known	good	implementation.

The	evaluator	shall	test	the	authenticated-decryption	functionality	of	AES-KW	using	the	same	test	as	for
authenticated-encryption,	replacing	plaintext	values	with	ciphertext	values	and	AES-KW	authenticated-
encryption	(KW-AE)	with	AES-KW	authenticated-decryption	(KW-AD).	For	the	authenticated-decryption	test,
20	out	of	the	100	trials	per	plaintext	length	must	have	ciphertext	values	that	are	not	authentic;	that	is,	they
fail	authentication.

Additionally,	the	evaluator	shall	perform	the	following	negative	tests:

Test	1	(invalid	plaintext	length):

Determine	the	valid	plaintext	lengths	of	the	implementation	from	the	TOE	specification.	Verify	that	the
implementation	of	KW-AE	in	the	TOE	rejects	plaintexts	of	invalid	length	by	testing	plaintext	of	the	following
lengths:	1)	plaintext	length	greater	than	64	semi-blocks,	2)	plaintext	bit-length	not	divisible	by	64,	3)	plaintext
with	length	0,	and	4)	plaintext	with	one	semi-block.

Test	2	(invalid	ciphertext	length):

Determine	the	valid	ciphertext	lengths	of	the	implementation	from	the	TOE	specification.	Verify	that	the
implementation	of	KW-AD	in	the	TOE	rejects	ciphertexts	of	invalid	length	by	testing	ciphertext	of	the
following	lengths:	1)	ciphertext	with	length	greater	than	65	semi-blocks,	2)	ciphertext	with	bit-length	not
divisible	by	64,	3)	ciphertext	with	length	0,	4)	ciphertext	with	length	of	one	semiblock,	and	5)	ciphertext	with
length	of	two	semi-blocks.

Test	3	(invalid	ICV1):

222	Test	that	the	implementation	detects	invalid	ICV1	values	by	encrypting	any	plaintext	value	eight	times
using	a	different	value	for	ICV1	each	time	as	follows:	Start	with	a	base	ICV1	of	0xA6A6A6A6A6A6A6A6.	For
each	of	the	eight	tests	change	a	different	byte	to	a	different	value,	so	that	each	of	the	eight	bytes	is	changed
once.	Verify	that	the	implementation	of	KW-AD	in	the	TOE	outputs	FAIL	for	each	test.

CAM-CBC:

To	test	the	encrypt	and	decrypt	functionality	of	Camellia	in	CBC	mode,	the	evaluator	shall	perform	the	tests
as	specified	in	10.2.1.2	of	ISO/IEC	18367:2016.

CAM-CCM:

To	test	the	encrypt	functionality	of	Camellia	in	CCM	mode,	the	evaluator	shall	perform	the	tests	as	specified
in	10.6.1.1	of	ISO/IEC	18367:2016.

To	test	the	decrypt	functionality	of	Camellia	in	CCM	mode,	the	evaluator	shall	perform	the	tests	as	specified
in	10.6.1.2	of	ISO/IEC	18367:2016.

As	a	prerequisite	for	these	tests,	the	evaluator	shall	perform	the	test	for	encrypt	functionality	of	Camellia	in
ECB	mode	as	specified	in	10.2.1.2	of	ISO/IEC	18367:2016.

CAM-GCM:

To	test	the	encrypt	functionality	of	Camellia	in	GCM,	the	evaluator	shall	perform	the	tests	as	specified	in
10.6.1.1	of	ISO/IEC	18367:2016.

To	test	the	decrypt	functionality	of	Camellia	in	GCM,	the	evaluator	shall	perform	the	tests	as	specified	in
10.6.1.2	of	ISO/IEC	18367:2016.

As	a	prerequisite	for	these	tests,	the	evaluator	shall	perform	the	test	for	encrypt	functionality	of	Camellia	in
ECB	mode	as	specified	in	10.2.1.2	of	ISO/IEC	18367:2016.

XTS-CAM:

These	tests	are	intended	to	be	equivalent	to	those	described	in	the	IPA	document,	ATR-01-B,	“Specifications
of	Cryptographic	Algorithm	Implementation	Testing	—	Symmetric-Key	Cryptography“,	found	at
https://www.ipa.go.jp/security/jcmvp/jcmvp_e/documents/atr/atr01b_en.pdf.

The	evaluator	shall	generate	test	values	as	follows:

For	each	supported	key	size	(256	bit	(for	Camellia-128)	and	512	bit	(for	Camellia256)	keys),	the	evaluator
shall	provide	up	to	five	data	lengths:

Two	data	lengths	divisible	by	the	128-bit	block	size,	If	data	unit	lengths	of	complete	block	sizes	are
supported.
Two	data	lengths	not	divisible	by	the	128-bit	block	size,	if	data	unit	lengths	of	partial	block	sizes	are
supported.
The	largest	data	length	supported	by	the	implementation,	or	2^16	(65536),	whichever	is	larger.

The	evaluator	shall	specify	whether	the	implementation	supports	tweak	values	of	128-bit	hexadecimal	strings
or	a	data	unit	sequence	numbers,	or	both.

For	each	combination	of	key	size	and	data	length,	the	evaluator	shall	provide	100	sets	of	input	data	and
obtain	the	ciphertext	that	results	from	XTS-Camellia	encryption.	If	both	kinds	of	tweak	values	are	supported,
50	of	each	100	sets	of	input	data	shall	use	each	type	of	tweak	value.	The	resulting	ciphertext	shall	be
compared	to	the	results	of	a	known-good	implementation.

As	a	prerequisite	for	this	test,	the	evaluator	shall	perform	the	test	for	encrypt	functionality	of	Camellia	in	ECB
mode	as	specified	in	10.2.1.2	of	ISO/IEC	18367:2016.

The	evaluator	shall	test	the	decrypt	functionality	of	XTS-Camellia	using	the	same	test	as	for	encrypt,
replacing	plaintext	values	with	ciphertext	values	and	XTSCamellia	encrypt	with	XTS-	Camellia	decrypt.

As	a	prerequisite	for	this	test,	the	evaluator	shall	perform	the	test	for	decrypt	functionality	of	Camellia	in	ECB
mode	as	specified	in	10.2.1.2	of	ISO/IEC	18367:2016.

FCS_RBG_EXT.1	Random	Bit	Generation

TSS
The	evaluator	shall	examine	the	TSS	to	determine	that	it	specifies	the	DRBG	type,	identifies	the	entropy
sources	seeding	the	DRBG,	and	state	the	assumed	or	calculated	min-entropy	supplied	either	separately	by
each	source	or	the	min-entropy	contained	in	the	combined	seed	value.

In	addition	to	the	materials	below,	documentation	shall	be	produced—and	the	evaluator	shall	perform	the
activities—in	accordance	with	Appendix	D	of	[DSCcPP].

Guidance
There	are	no	AGD	evaluation	activities	for	this	component.
KMD
There	are	no	KMD	evaluation	activities	for	this	component.
Tests
The	following	tests	require	the	developer	to	provide	access	to	a	test	platform	that	provides	the	evaluator	with
tools	that	are	typically	not	found	on	factory	products.

The	evaluator	shall	perform	15	trials	for	the	RNG	implementation.	If	the	RNG	is	configurable,	the	evaluator
shall	perform	15	trials	for	each	configuration.

If	the	RNG	has	prediction	resistance	enabled,	each	trial	consists	of	(1)	instantiate	DRBG,	(2)	generate	the	first
block	of	random	bits	(3)	generate	a	second	block	of	random	bits	(4)	uninstantiate.	The	evaluator	verifies	that
the	second	block	of	random	bits	is	the	expected	value.	The	evaluator	shall	generate	eight	input	values	for
each	trial.	The	first	is	a	count	(0	–	14).	The	next	three	are	entropy	input,	nonce,	and	personalization	string	for

https://www.ipa.go.jp/security/jcmvp/jcmvp_e/documents/atr/atr01b_en.pdf

the	instantiate	operation.	The	next	two	are	additional	input	and	entropy	input	for	the	first	call	to	generate.
The	final	two	are	additional	input	and	entropy	input	for	the	second	call	to	generate.	These	values	are
randomly	generated.	“generate	one	block	of	random	bits”	means	to	generate	random	bits	with	number	of
returned	bits	equal	to	the	Output	Block	Length	(as	defined	in	NIST	SP800-90A).

If	the	RNG	does	not	have	prediction	resistance,	each	trial	consists	of	(1)	instantiate	DRBG,	(2)	generate	the
first	block	of	random	bits	(3)	reseed,	(4)	generate	a	second	block	of	random	bits	(5)	uninstantiate.	The
evaluator	verifies	that	the	second	block	of	random	bits	is	the	expected	value.	The	evaluator	shall	generate
eight	input	values	for	each	trial.	The	first	is	a	count	(0	–	14).	The	next	three	are	entropy	input,	nonce,	and
personalization	string	for	the	instantiate	operation.	The	fifth	value	is	additional	input	to	the	first	call	to
generate.	The	sixth	and	seventh	are	additional	input	and	entropy	input	to	the	call	to	reseed.	The	final	value	is
additional	input	to	the	second	generate	call.

The	following	paragraphs	contain	more	information	on	some	of	the	input	values	to	be	generated/selected	by
the	evaluator.

Entropy	input:	the	length	of	the	entropy	input	value	must	equal	the	seed	length.
Nonce:	If	a	nonce	is	supported	(CTR_DRBG	with	no	Derivation	Function	does	not	use	a	nonce),	the
nonce	bit	length	is	one-half	the	seed	length.
Personalization	string:	The	length	of	the	personalization	string	must	be	≤	seed	length.	If	the
implementation	only	supports	one	personalization	string	length,	then	the	same	length	can	be	used	for
both	values.	If	more	than	one	string	length	is	support,	the	evaluator	shall	use	personalization	strings	of
two	different	lengths.	If	the	implementation	does	not	use	a	personalization	string,	no	value	needs	to	be
supplied.
Additional	input:	the	additional	input	bit	lengths	have	the	same	defaults	and	restrictions	as	the
personalization	string	lengths.

FCS_SLT_EXT.1	Cryptographic	Salt	Generation

TSS
The	evaluator	shall	ensure	the	TSS	describes	how	salts	are	generated	using	the	RBG.
Guidance
There	are	no	AGD	evaluation	activities	for	this	component.
KMD
There	are	no	KMD	evaluation	activities	for	this	component.
Tests
The	evaluator	shall	confirm	by	testing	that	the	salts	obtained	in	the	cryptographic	operations	that	use	the
salts	are	of	the	length	specified	in	FCS_SLT_EXT.1,	are	obtained	from	the	RBG,	and	are	fresh	on	each
invocation.

Note:	in	general	these	tests	may	be	carried	out	as	part	of	the	tests	of	the	relevant	cryptographic	operations.

FCS_STG_EXT.1	Protected	Storage

TSS
The	evaluator	shall	review	the	TSS	to	determine	that	the	TOE	implements	the	required	protected	storage.	The
evaluator	shall	ensure	that	the	TSS	contains	a	description	of	the	protected	storage	mechanism	that	justifies
the	selection	of	mutable	hardware-based	or	software-based.

Guidance
The	evaluator	shall	examine	the	operational	guidance	to	ensure	that	it	describes	the	process	for	generating
keys,	importing	keys,	or	both,	based	on	what	is	claimed	by	the	ST.	The	evaluator	shall	also	examine	the
operational	guidance	to	ensure	that	it	describes	the	process	for	destroying	keys	that	have	been	imported	or
generated.

KMD
There	are	no	KMD	evaluation	activities	for	this	component.
Tests
The	evaluator	shall	test	the	functionality	of	each	security	function	as	described	below.	If	the	TOE	supports
both	import	and	generation	of	keys,	the	evaluator	shall	repeat	the	testing	as	needed	to	demonstrate	that	the
keys	resulting	from	both	operations	are	treated	in	the	same	manner.	The	devices	used	with	the	tooling	may
need	to	be	non-production	devices	in	order	to	enable	the	execution	and	gathering	of	evidence.

Test	1:	The	evaluator	shall	import	or	generate	keys/secrets	of	each	supported	type	according	to	the
operational	guidance.	The	evaluator	shall	write,	or	the	developer	shall	provide	access	to,	an	application
that	generates	a	key/secret	of	each	supported	type	and	calls	the	import	functions.	The	evaluator	shall
verify	that	no	errors	occur	during	import.
Test	2:	The	evaluator	shall	write,	or	the	developer	shall	provide	access	to,	an	application	that	uses	a
generated	or	imported	key/secret:

For	RSA,	the	secret	shall	be	used	to	sign	data.
For	ECDSA,	the	secret	shall	be	used	to	sign	data.

The	evaluator	shall	repeat	this	test	with	the	application-imported	or	applicationgenerated	keys/secrets
and	a	different	application’s	imported	keys/secrets	or	generated	keys/secrets.	The	evaluator	shall	verify
that	the	TOE	requires	approval	before	allowing	the	application	to	use	the	key/secret	imported	or
generated	by	the	user	or	by	a	different	application:

The	evaluator	shall	deny	the	approvals	to	verify	that	the	application	is	not	able	to	use	the	key/secret
as	described.
The	evaluator	shall	repeat	the	test,	allowing	the	approvals	to	verify	that	the	application	is	able	to
use	the	key/secret	as	described.

If	the	ST	author	has	selected	common	application	developer,	this	test	is	performed	by	either	using
applications	from	different	developers	or	appropriately	(according	to	API	documentation)	not	authorizing

sharing.

Test	3:	The	evaluator	shall	destroy	keys/secrets	of	each	supported	type	according	to	the	operational
guidance.	The	evaluator	shall	write,	or	the	developer	shall	provide	access	to,	an	application	that	destroys
an	imported	or	generated	key/secret.	The	evaluator	shall	repeat	this	test	with	the	application-imported
or	applicationgenerated	keys/secrets	and	a	different	application’s	imported	or	generated	keys/secrets.
The	evaluator	shall	verify	that	the	TOE	requires	approval	before	allowing	the	application	to	destroy	the
key/secret	imported	by	the	administrator	or	by	a	different	application:

The	evaluator	shall	deny	the	approvals	and	verify	that	the	application	is	still	able	to	use	the
key/secret	as	described.
The	evaluator	shall	repeat	the	test,	allowing	the	approvals	and	verifying	that	the	application	is	no
longer	able	to	use	the	key/secret	as	described.

If	the	ST	author	has	selected	common	application	developer,	this	test	is	performed	by	either	using
applications	from	different	developers	or	appropriately	(according	to	API	documentation)	not	authorizing
sharing.

FCS_STG_EXT.2	Key	Storage	Encryption

TSS
The	evaluator	shall	review	the	TSS	to	determine	that	the	TSS	describes	the	protection	of	symmetric	keys,
KEKs,	long-term	trusted	channel	key	material,	and	software-based	key	storage	as	claimed	in
FCS_STG_EXT.2.1.
Guidance
There	are	no	AGD	evaluation	activities	for	this	component.
KMD
There	are	no	KMD	evaluation	activities	for	this	component
Tests
There	are	no	test	evaluation	activities	for	this	component.

FCS_STG_EXT.3	Key	Integrity	Protection

TSS
The	evaluator	shall	examine	the	TSS	and	ensure	that	it	contains	a	description	of	how	the	TOE	protects	the
integrity	of	its	keys.
Guidance
There	are	no	AGD	evaluation	activities	for	this	component.
KMD
There	are	no	KMD	evaluation	activities	for	this	component.
Tests
There	are	no	test	evaluation	activities	for	this	component.

2.1.2	User	Data	Protection

FDP_ACC.1	Subset	Access	Control

TSS
The	evaluator	shall	confirm	that	the	TSS	contain	the	access	control	policy	implemented	by	the	TOE.	I.e.,	the
ST	author	lists	each	object	and	identifies	for	each	object,	which	operations	the	TSF	permits	for	each	subject
(i.e.	what	can	“admins”	do	vs	“users”).
Guidance
There	are	no	guidance	evaluation	activities	for	this	component.
KMD
There	are	no	KMD	evaluation	activities	for	this	component.
Tests
Testing	for	FDP_ACF	includes	testing	this	component.

FDP_ACF.1	Security	Attribute	Based	Access	Control

TSS
The	evaluator	shall	examine	the	TSS	to	verify	that	it	describes	the	policy	rules	for	the	Access	Control	SFP.
Specifically,	the	evaluator	should	be	able	to	identify,	for	any	arbitrary	subject-object-operation	pairing,	which
of	the	following	is	true:

a.	 The	subject	can	always	perform	the	desired	operation.
b.	 The	subject	can	never	perform	the	desired	operation,	either	because	they	lack	sufficient	permission	or

because	the	TSF	includes	no	interface	to	support	the	operation.
c.	 The	subject	can	only	perform	the	desired	operation	under	certain	conditions	(which	the	evaluator	shall

verify	are	described	in	the	TSS).	For	example,	“the	S.CA	subject	may	only	perform	the	OP.Destroy
operation	on	an	OB.SDO	object	if	it	was	the	subject	that	originally	created	or	imported	the	SDO.”

d.	 The	subject	can	only	perform	the	desired	operation	on	one	or	more	attributes	of	the	object	as	opposed	to
the	entire	object	itself	(which	the	evaluator	shall	verify	are	identified	in	the	TSS).

e.	 Whether	the	subject	can	perform	the	desired	operation	depends	on	TSF	configuration	(which	the
evaluator	shall	verify	is	described	in	the	TSS	as	part	of	the	evaluation	of	FMT_SMF.1).

f.	 Some	combination	of	c,	d,	and	e.

Given	that	this	SFR	requires	a	large	number	of	potential	subject-object-operation	pairings	to	be	identified,	it
is	not	the	expectation	that	the	TSS	contain	an	exhaustive	list	of	these	pairings.	It	is	possible	that	large
numbers	of	pairings	are	addressed	by	blanket	statements	of	policy	rules,	such	as	“the	subjects	S.DSC	and
S.CA	are	never	able	to	perform	any	operation	on	the	OB.AntiReplay	object.”	For	any	rules	that	are	not

addressed	in	this	manner,	the	evaluator	shall	verify	the	TSS	includes	sufficient	data	for	the	evaluator	to
determine	how	the	TSF	will	evaluate	the	action.	This	can	be	presented	in	the	form	of	a	table,	flowchart,	list,
or	other	manner	that	the	ST	author	finds	suitable.

Note	that	the	DSC	developer	may	not	use	the	same	terminology	for	its	subjects,	objects,	and	operations	as	the
PP.	If	this	is	the	case,	the	evaluator	shall	verify	that	the	TSS	includes	a	mapping	that	unambiguously	shows
how	the	vendor’s	preferred	terminology	corresponds	to	what	the	PP	defines.

Guidance
For	any	access	control	policy	enforcement	behavior	that	is	configurable,	the	evaluator	shall	ensure	that	the
operational	guidance	describes	how	to	perform	the	configuration,	including	any	restrictions	on	permissible
configurable	settings.
KMD
There	are	no	KMD	evaluation	activities	for	this	component.
Tests
The	following	testing	may	require	the	TOE	developer	to	make	a	test	harness	available	to	the	evaluator	that
allows	the	evaluator	to	interface	directly	with	the	DSC.	Due	to	the	large	volume	of	potential	testing	that	this
requires,	this	test	may	require	the	use	of	an	automated	script.	If	a	test	script	is	made	available,	the	evaluator
shall	verify	that	it	includes	sufficient	detail	to	validate	the	claims	made	in	the	TSS.

For	each	subject/object/operation/attribute	combination,	the	evaluator	shall	attempt	to	perform	the	operation
or	determine	that	no	interface	is	present	to	attempt	the	operation,	consistent	with	the	limitations	described	in
the	TSS.

For	each	case	where	an	operation	is	always	permitted	or	never	permitted,	both	positive	and	negative	testing
will	be	conducted	implicitly	by	attempting	the	operation	with	all	possible	subjects	and	determining	that	the
intended	results	occur	in	each	case.

For	each	case	where	the	operation	succeeds	or	fails	based	on	the	target	object	attribute,	the	evaluator	shall
ensure	that	both	positive	and	negative	testing	is	performed	such	that	only	the	correct	target	attributes	can	be
operated	upon.

For	each	case	where	the	operation	succeeds	or	fails	based	on	one	or	more	specific	conditions,	the	evaluator
shall	ensure	that	both	positive	and	negative	testing	is	performed	such	that	the	presence	of	the	conditions
causes	the	test	to	succeed	while	the	absence	of	the	conditions	causes	the	test	to	fail.

For	each	case	where	the	operation	succeeds	or	fails	based	on	an	administratively	configured	setting,	the
evaluator	shall	ensure	that	both	positive	and	negative	testing	is	performed	such	that	the	configuration	setting
can	be	shown	to	affect	whether	or	not	the	operation	succeeds.

FDP_ETC_EXT.2	Propagation	of	SDOs

TSS
The	evaluator	shall	examine	the	TSS	to	ensure	that	it	describes	how	it	protects	the	SDO	references,
authorization	data,	against	access	from	unauthorized	entities.	If	the	TSF	is	selected,	then	it	should	describe
how	it	provides	confidentiality	of	the	data	while	it	resides	outside	the	TOE.
Guidance
There	are	no	guidance	evaluation	activities	for	this	component.
KMD
There	are	no	KMD	evaluation	activities	for	this	component.
Tests
There	are	no	test	evaluation	activities	for	this	component.

FDP_FRS_EXT.1	Factory	Reset

TSS
The	evaluator	shall	examine	the	TSS	to	determine	that	it	describes	each	of	the	conditions	which	will	lead	to	a
factory	reset.
Guidance
The	evaluator	shall	examine	the	operational	guidance	to	ensure	that	it	describes	the	ways	the	administrator
can	set	the	conditions	to	initiate	a	factory	reset.
KMD
There	are	no	KMD	evaluation	activities	for	this	component.
Tests
The	evaluator	shall	identify	all	functions	that	resets	the	DSC	to	factory	setting.	For	each	function,	the
evaluator	shall	identify	all	methods	for	authorizing	the	factory	reset.	For	each	function	and	for	each
authorization	method,	the	evaluator	shall	create	an	SDE	or	SDO.	The	evaluator	shall	then	verify	the	presence
of	the	item	just	created.	The	evaluator	shall	initiate	a	factory	reset	using	the	selected	function	and
authorization	method	and	verify	the	item	no	longer	exists.

FDP_ITC_EXT.1	Parsing	of	SDEs

TSS
The	evaluator	shall	confirm	the	TSS	contains	descriptions	of	the	supported	methods	the	TSF	uses	to	import
SDEs	into	the	TOE.	For	each	import	method	selected,	the	TSS	shall	describe	integrity	verification	schemes
employed.	The	TSS	shall	also	list	the	ways	the	TSF	generates	and	binds	security	attributes	to	the	SDEs.
Guidance
There	are	no	AGD	evaluation	activities	for	this	component.
KMD
There	are	no	KMD	evaluation	activities	for	this	component.

Tests
For	each	supported	import	method	selected	in	FDP_ITC_EXT.1.1	and	for	each	supported	integrity	verification
method	selected	in	FDP_ITC_EXT.1.2.	used	by	the	selected	import	method,	provide	one	SDE	with	valid
integrity	credentials,	one	with	invalid	integrity	credentials	(e.g.	hash).	The	operations	with	invalid	integrity
credentials	must	result	in	error.	The	operations	with	valid	integrity	credentials	must	return	an	SDO	with	valid
security	attributes	in	accordance	with	FDP_ITC_EXT.1.4.

FDP_ITC_EXT.2	Parsing	of	SDOs

TSS
The	evaluator	shall	confirm	the	TSS	contains	descriptions	of	the	supported	methods	the	TSF	uses	to	import
SDOs	into	the	TOE.	For	each	import	method	selected,	the	TSS	shall	describe	integrity	verification	schemes
employed.	The	TSS	shall	also	list	the	ways	the	TSF	generates	and	binds	security	attributes	to	the	SDOs.
Guidance
There	are	no	AGD	evaluation	activities	for	this	component.
KMD
There	are	no	KMD	evaluation	activities	for	this	component.
Tests
For	each	supported	import	method	selected	in	FDP_ITC_EXT.2.1	and	for	each	supported	integrity	verification
method	selected	in	FDP_ITC_EXT.2.2	used	by	the	selected	import	method,	provide	one	SDO	with	valid
integrity	credentials,	one	with	invalid	integrity	credentials	(e.g.	hash).	The	operations	with	invalid	integrity
credentials	must	result	in	error.	The	operations	with	valid	integrity	credentials	must	return	an	SDO	with	valid
security	attributes	in	accordance	with	FDP_ITC_EXT.2.3,	FDP_ITC_EXT.2.4,	and	FDP_ITC_EXT.2.5.

FDP_MFW_EXT.1	Mutable/Immutable	Firmware

TSS
The	evaluator	shall	examine	the	TSS	and	ensure	that	details	of	which	firmware	components	are	considered
mutable	and	which	firmware	components	are	considered	immutable,	as	well	as	how	these	firmware
components	can/cannot	be	modified	or	altered,	are	described.	For	example,	DSC	firmware	components	that
are	stored	in	ROM	would	be	considered	immutable.
Guidance
If	the	TOE	has	mutable	firmware,	the	evaluator	shall	examine	the	operational	guidance	to	ensure	that	it
describes	how	to	modify	the	firmware.
KMD
There	are	no	KMD	evaluation	activities	for	this	component.
Tests
If	the	TOE	has	mutable	firmware,	the	evaluator	shall	perform	the	activities	described	in	the	operational
guidance	to	modify	the	firmware.

FDP_RIP.1	Subset	Residual	Information	Protection

TSS
The	evaluator	shall	check	to	ensure	that	the	TSS	describes	resource	deallocation	to	the	extent	that	they	can
determine	that	no	data	will	be	reused	when	reallocating	resources	following	the	destruction	of	an	SDE	or
SDO.	The	evaluator	shall	ensure	that	this	description	at	a	minimum	describes	how	the	previous	data	is
destroyed.	The	evaluator	shall	also	ensure	that	this	destruction	method	is	consistent	with	FCS_CKM.4.
Guidance
There	are	no	AGD	evaluation	activities	for	this	component.
KMD
There	are	no	KMD	evaluation	activities	for	this	component.
Tests
Testing	for	FCS_CKM.4	is	sufficient	to	address	this	component.

FDP_SDC_EXT.1	Confidentiality	of	SDEs

TSS
The	evaluator	shall	examine	the	TSS	to	determine	that	it	describes	the	protection	for	SDEs	and	authorization
data	and	the	methods	of	protection	(e.g.	protected	storage,	symmetric	encryption,	key	wrapping,	etc.).

The	evaluator	shall	also	examine	the	TSS	to	determine	whether	the	TSF	stores	this	data	inside	the	TOE
boundary	or	in	its	operational	environment.	If	the	TSF	stores	this	data	inside	the	TOE	boundary,	the	evaluator
shall	ensure	that	TSF	uses	one	of	the	listed	methods	to	provide	confidentiality.	If	the	data	is	stored	in	the
TOE’s	operational	environment,	the	evaluator	shall	ensure	that	the	TSF	uses	key	wrapping	to	provide
confidentiality.

The	evaluator	shall	examine	the	TSS	to	confirm	is	sufficiently	describes	each	method	used	to	provide
confidentiality	for	SDEs.	The	evaluator	shall	also	confirm	that	the	TOE	supports	all	encryption	methods
selected.
Guidance
There	are	no	AGD	evaluation	activities	for	this	component.
KMD
There	are	no	KMD	evaluation	activities	for	this	component.
Tests
If	the	TOE	stores	SDEs	and	authorization	data	inside	the	TSF,	the	evaluator	shall	ensure	that	external
interfaces	cannot	extract	this	data	in	plaintext.

In	this	case,	use	the	evaluation	activities	of	the	FPT_PHP.3	if	protected	storage	is	selected,	FCS_COP.1/SK	if
symmetric	encryption	using…	is	selected,	and	FCS_COP.1/KAT	if	key	wrapping	using…	is	selected.

If	the	TOE	stores	authentication	data	inside	the	operational	environment,	the	evaluator	shall	ensure	that
plaintext	data	is	not	visible	on	the	interface	between	the	TOE	and	the	operational	environment.

FDP_SDI.2	Stored	Data	Integrity	Monitoring	and	Action

TSS
The	evaluator	shall	confirm	that	the	ST	author	describes	the	methods	for	protecting	the	integrity	of	SDOs
stored	with	the	TOE,	and	shall	identify	the	iteration	of	FCS_COP.1/Hash	or	FCS_COP.1/HMAC	that	covers	any
cryptographic	algorithm	used.	The	evaluator	shall	also	confirm	that	the	TSS	describes	the	response	upon	the
detection	of	an	integrity	error.

The	evaluator	shall	confirm	that	the	TSS	describes	the	actions	the	TSF	takes	when	the	integrity	verification
fails	for	an	SDO,	including	the	circumstances	that	cause	a	notification	to	be	sent	when	this	occurs.

The	evaluator	shall	confirm	that	TSS	describes	how	integrity	of	SDOs	is	protected	in	FMT_MSA.3	during
initialization,	and	how	the	integrity	of	SDOs	are	verified	during	parsing	(import)	in	FDP_ITC_EXT.
Guidance
The	evaluator	shall	examine	the	operational	guidance	to	verify	that	it	describes	the	conditions	that	cause	a
notification	to	be	sent	when	an	integrity	error	is	detected,	and	what	the	contents	of	the	notification	are.
KMD
There	are	no	KMD	evaluation	activities	for	this	component.
Tests
The	tests	for	FDP_ITC_EXT	and	FMT_MSA.3	shall	suffice	for	this	component.

2.1.3	Identification	and	Authentication

FIA_AFL_EXT.1	Authorization	Failure	Handling

TSS
The	evaluator	shall	examine	the	TSS	to	determine	that	it	contains	a	description	for	how	successive
unsuccessful	authorization	attempts	are	detected	and	tracked.	The	evaluator	shall	examine	the	TSS	to
determine	that	is	contains	a	description	of	the	actions	in	the	event	that	the	authorization	attempt	threshold	is
met	or	exceeded.

The	evaluator	shall	also	examine	the	TSS	to	determine	that	it	describes	how	the	failed	authorization	attempt
counter	is	incremented	before	the	authorization	is	verified.

The	evaluator	shall	also	examine	the	TSS	to	determine	the	behaviour	that	will	occur	if	there	are	excessive
failed	authorization	attempts,	specifically	whether	future	attempts	are	prevented	for	a	static	or	configurable
amount	of	time,	future	attempts	are	prevented	indefinitely,	or	a	factory	reset	is	triggered.
Guidance
The	evaluator	shall	examine	the	guidance	documentation	to	ensure	that	instructions	for	configuring	the
number	of	successive	unsuccessful	authentication	attempts	and	time	period	(if	implemented)	are	provided,
and	that	the	process	of	unlocking	the	SDOs	is	described	for	each	“action”	specified	(if	that	option	is	chosen).

The	evaluator	shall	examine	the	guidance	documentation	to	confirm	that	it	describes,	and	identifies	the
importance	of,	any	actions	that	are	required	in	order	to	ensure	that	access	to	SDOs	can	be	maintained,	unless
it	is	made	permanently	unavailable	due	to	a	factory	reset.
KMD
There	are	no	KMD	evaluation	activities	for	this	component.
Tests
The	evaluator	shall	perform	the	following	tests	for	each	method	by	which	the	TSF	authorizes	access	the	SDOs
(e.g.	any	passwords	entered	as	part	of	establishing	authorization):

Test	1:	The	evaluator	shall	use	the	operational	guidance	to	configure	the	number	of	successive
unsuccessful	authorization	attempts	allowed	by	the	TOE	(and,	if	the	time	period	selection	in
FIA_AFL_EXT.1.3	is	included	in	the	ST,	then	the	evaluator	shall	also	use	the	operational	guidance	to
configure	the	time	period	after	which	access	is	re-enabled).	The	evaluator	shall	test	that	once	the
authorization	attempts	limit	is	reached,	authorization	attempts	with	valid	credentials	are	no	longer
successful.
Test	2:	After	reaching	the	limit	for	unsuccessful	authorization	attempts	as	in	Test	1	above,	the	evaluator
shall	proceed	as	follows.	If	the	action	selected	in	FIA_AFL_EXT.1.3	is	included	in	the	ST	then	the
evaluator	shall	confirm	by	testing	that	following	the	operational	guidance	and	performing	each	action
specified	in	the	ST	to	re-enable	access	results	in	successful	access.	If	the	time	period	selection	in
FIA_AFL_EXT.1.3	is	included	in	the	ST,	then	the	evaluator	shall	wait	for	just	less	than	the	time	period
configured	in	Test	1	and	show	that	an	authorization	attempt	using	valid	credentials	does	not	result	in
successful	access.	The	evaluator	shall	then	wait	until	just	after	the	time	period	configured	in	Test	1	and
show	that	an	authorization	attempt	using	valid	credentials	results	in	successful	access.
Test	3:	[conditional]:	If	factory	reset	the	TOE	wiping	out	all	non-persistent	SDOs,	as	described	by
FDP_FRS_EXT.2	is	selected	in	FIA_AFL_EXT.1.3,	the	evaluator	shall	perform	the	test	required	by
FDP_FRS_EXT.2	with	step	5	replaced	with	“The	evaluator	shall	initiate	a	factory	reset	by	deliberately
meeting	or	surpassing	the	threshold	for	unsuccessful	authorization	attempts,	depending	on	whether
meets	or	surpasses	is	selected	in	FIA_AFL_EXT.1.3.”

FIA_SOS.2	TSF	Generation	of	Secrets

TSS
The	evaluator	shall	ensure	that	the	TSS	describes	for	each	of	the	TSF	functions	listed	in	FIA_SOS.2.2,	if	the
available	key	space	is	configurable,	and	the	size	(or	range)	of	the	key	space	employed	to	generate
authorization	values.

The	evaluator	shall	ensure	that	the	TSS	states	that	the	quality	metrics	provided	is	based	on	the	assumption	of
sufficient	entropy	being	provided	in	accordance	with	the	information	given	in	[DSCcPP]	Annex	D.

The	evaluator	shall	ensure	that	the	TSS	describes	the	restrictions	implemented	in	order	to	restrict
consecutive	authentication	attempts.	(Authentication	throttling)

The	evaluator	shall	ensure	that	the	TSS	describes	the	mechanism	used	to	generate	authorization	values	and
documents	the	quality	metric	that	the	mechanism	provides.	The	information	provided	in	the	TSS	shall
demonstrate	that:

a.	 The	probability	that	a	random	single	authentication	attempt	will	be	successful	is	less	than	one	in
1,000,000;	and

b.	 The	probability	that	random	multiple	authentication	attempts	during	a	one	(1)	minute	period	will	be
successful	is	less	than	one	in	100,000.

Guidance
The	evaluator	shall	examine	the	guidance	documentation	to	determine	that	it	describes	any	configuration
necessary	to	enforce	the	use	of	TSF	generated	authorization	values	listed	in	FIA_SOS.2.2.

The	evaluator	shall	ensure	that	the	guidance	documentation	provides	any	instructions	needed	to	set
parameters	affecting	the	available	key	spaces.
KMD
There	are	no	KMD	evaluation	activities	for	this	component.
Tests
The	evaluator	shall	perform	the	following	tests.

Test	1:	The	evaluator	shall	compose	a	set	of	50	authorization	values	that	meet	the	requirements,	and	50
authorization	values	that	fail	to	meet	the	requirements.
a.	 For	each	authentication	value	that	meets	the	requirements,	the	evaluator	shall	verify	that	the	TOE

supports	the	authentication	value.
b.	 For	each	authentication	value	that	does	not	meet	the	requirements,	the	evaluator	shall	verify	that

the	TOE	does	not	support	the	authentication	value.
While	the	evaluator	is	not	required	(nor	is	it	feasible)	to	test	all	possible	compositions	of	authentication
values,	the	evaluator	shall	ensure	that	the	key	space	identified	in	the	TSS	is	valid.
Test	2:	For	each	TSF	function	listed	in	FIA_SOS.2.2	the	TOE	shall	be	configured	to	generate	the
authentication	values;	the	evaluator	shall	check	that	the	TOE	produces	the	authentication	values.

FIA_UAU.2	User	Authentication	before	Any	Action

TSS
The	evaluator	shall	examine	the	TSS	to	determine	that	it	describes	the	identification	and	authentication
process	for	each	supported	method	(PIN/try-PIN,	salted	hash,	etc.),	the	circumstances	in	which	each
supported	method	is	used,	and	constitutes	“successful	authentication.”

The	evaluator	shall	examine	the	TSS	to	determine	that	it	describes	which	actions	are	allowed	before	user
identification	and	authentication.	The	evaluator	shall	also	determine	that	the	TSS	describes,	for	each	action
that	does	require	identification	and	authentication,	the	method	and	circumstances	by	which	the
authentication	is	performed	(e.g.,	as	per	the	application	note,	the	TSF	may	authenticate	a	user	once	rather
than	each	time	access	to	an	SDO	is	attempted;	the	TSS	shall	describe	when	authentication	is	or	is	not
required	in	order	to	perform	a	TSF-mediated	action).
Guidance
The	evaluator	shall	examine	the	guidance	documentation	to	determine	that	any	necessary	preparatory	steps
(e.g.,	establishing	valid	credential	material	such	as	PIN)	to	logging	in	are	described.	For	each	supported	the
login	method,	the	evaluator	shall	ensure	the	guidance	documentation	provides	clear	instructions	for
successfully	logging	on.
KMD
There	are	no	KMD	evaluation	activities	for	this	component.
Tests
The	evaluator	shall	use	the	guidance	documentation	to	configure	the	appropriate	credentials	supported	for
each	authentication	method.	For	that	authentication	method,	the	evaluator	shall	attempt	to	perform	TSF-
mediated	actions	that	require	successful	use	of	that	authentication	method	and	subsequently	show	that
providing	correct	I&A	information	results	in	the	ability	to	perform	the	requested	action,	while	providing
incorrect	information	results	in	denial	of	access.

FIA_UAU.5	Multiple	Authentication	Mechanisms

TSS
The	evaluator	shall	examine	the	TSS	and	ensure	that	it	describes	the	authentication	mechanisms	used	to
support	user	authentication	for	the	Prove	service	as	well	as	how	each	authentication	mechanism	provides
authentication	for	the	Prove	service.
Guidance
If	the	supported	authentication	mechanisms	are	configurable,	the	evaluator	shall	examine	the	operational
guidance	to	verify	that	it	describes	how	to	configure	the	authentication	mechanisms	used	to	provide
authentication	for	the	Prove	service.
KMD
There	are	no	KMD	evaluation	activities	for	this	component.
Tests
For	each	supported	authentication	mechanism,	the	evaluator	shall	verify	that	valid	credentials	result	in
successful	authentication	and	invalid	credentials	result	in	a	rejected	authentication	attempt.	If	the	supported
authentication	mechanisms	are	configurable,	the	evaluator	shall	follow	the	operational	guidance	to
enable/disable	the	various	mechanisms	and	ensure	that	valid	credentials	do	not	result	in	successful

authentication	if	that	mechanism	is	disabled,	or	that	there	is	no	interface	to	provide	authentication
credentials	over	an	external	interface	when	that	mechanism	is	disabled.

FIA-UAU.6	Re-Authenticating

TSS
The	evaluator	shall	examine	the	TSS	to	determine	that	it	describes	each	of	the	options	for	reauthorization.
Guidance
There	are	no	AGD	evaluation	activities	for	this	component.
KMD
There	are	no	KMD	evaluation	activities	for	this	component.
Tests
The	evaluator	shall	use	the	configuration	guidance	to	create	an	SDO	with	each	of	the	options	for
reauthorization,	then	identify	functions	to	exercise	each	of	these	options,	then	execute	these	options
providing	the	correct	authorization	confirming	that	the	operation	succeeded	with	respect	to	the
reauthorization	option	chosen.	The	evaluator	shall	then	attempt	to	execute	these	functions	while	providing
the	incorrect	authorization	and	confirming	that	the	operation	fails.

2.1.4	Security	Management	(FMT)

FMT_MOF_EXT.1	Management	of	Security	Functions	Behavior

TSS
The	evaluator	shall	verify	that	the	TSS	describes	those	management	functions	that	may	be	performed	by	the
Administrator,	to	include	how	the	client	applications	are	prevented	from	accessing,	performing,	or	relaxing
the	function	(if	applicable),	and	how	they	are	prevented	from	modifying	the	Administrator	configuration.	The
TSS	also	describes	any	functionality	that	is	affected	by	administrator-configured	policy	and	how.	This	activity
will	be	performed	in	conjunction	with	FMT_SMF_EXT.1.
Guidance
There	are	no	AGD	evaluation	activities	for	this	component.
KMD
There	are	no	KMD	evaluation	activities	for	this	component.
Tests
For	each	management	function	described	in	FMT_SMF_EXT.1.1,	the	evaluator	shall	perform	the	function	with
administrator	authorization	data	and	confirm	it	succeeds,	and	again	with	client	application	authorization	data
and	confirm	that	it	fails.

FMT_MSA.1	Management	of	Security	Attributes

TSS
The	evaluator	shall	confirm	that	the	TSS	describes	the	modification	constraints	for	each	SDO	security
attribute.
Guidance
There	are	no	AGD	evaluation	activities	for	this	component.
KMD
There	are	no	KMD	evaluation	activities	for	this	component.
Tests
The	evaluator	shall	confirm	that	the	evaluation	activities	for	FDP_ACF.1	contains	tests	for	the	OP.Modify
operation	on	objects	OB.P_SDO,	OB.T_SDO.

FMT_MSA.3	Static	Attribute	Initialization

TSS
The	evaluator	shall	confirm	that	the	TSS	describes	the	initialization	process	for	importing	and	generating
SDOs.	The	TSS	shall	describe	each	type	of	SDO.Type	and	any	additional	attributes	that	are	beyond	the	ones
listed.	Additionally,	list	any	further	restrictions	of	the	allowed	values	for	the	minimum	list	of	attributes.

The	evaluator	shall	confirm	that	the	TSS	describes	the	allowed	values	for	each	of	the	attributes.
Guidance
There	are	no	AGD	evaluation	activities	for	this	component.
KMD
There	are	no	KMD	evaluation	activities	for	this	component.
Tests
The	evaluator	shall	confirm	that	the	evaluation	activities	for	FDP_ACF.1	contains	tests	for	the	OP.Import	and
OP.Create	operations	on	objects	OB.P_SDO,	OB.T_SDO.

FMT_SMF.1	Specification	of	Management	Functions

TSS
The	evaluator	shall	verify	that	the	TSS	describes	all	management	functions.
Guidance
The	evaluator	shall	verify	that	the	AGD	describes	how	the	administrator	configures	the	management
functions.
KMD
There	are	no	KMD	evaluation	activities	for	this	component.
Tests
Testing	for	this	component	is	performed	through	evaluation	of	FMT_MOF_EXT.1.

FMT_SMR.2	Restrictions	on	Security	Roles

TSS
The	evaluator	shall	confirm	that	the	TSS	describes	the	mechanisms	by	which	client	applications	can
exclusively	access	their	own	encrypted	data	and	administrators	cannot	access	client	application	encrypted
data.	The	evaluator	shall	also	confirm	the	TSS	describes	the	mechanisms	that	allow	only	administrators	to
perform	privileged	functions.
Guidance
The	evaluator	shall	verify	that	the	AGD	describes	how	the	administrator	configures	the	management
functions.
KMD
There	are	no	KMD	evaluation	activities	for	this	component.
Tests
Testing	for	this	component	is	performed	through	evaluation	of	FMT_MOF_EXT.1.

2.1.5	Protection	of	the	TSF

FPT_FLS.1/FI	Failure	with	Preservation	of	Secure	State	(Fault	Injection)

TSS
The	evaluator	shall	examine	the	TSS	to	verify	that	it	describes	the	actions	taken	when	the	TOE	experiences
fault	injection	and	how	the	DSC	preserves	a	secure	state.

The	evaluator	shall	verify	that	the	TSS	describes	the	state	of	the	DSC	when	the	firmware	validity	checks	fail,
including	the	various	failure	modes	assumed.
Guidance
The	evaluator	shall	examine	the	operational	guidance	to	verify	that	it	describes	what	actions	should	be	taken
to	attempt	to	resolve	the	failed	state.
KMD
There	are	no	KMD	evaluation	activities	for	this	component.
Tests
The	evaluator	shall	perform	fault	injection	on	the	DSC	and	attempt	to	extract	a	known	SDO/SDE.

The	evaluator	shall	cause	the	DSC	to	parse	or	generate	an	SDO/SDE	with	a	known	value.	The	evaluator	will
then	cause	the	TOE	to	process	the	SDO/SDE,	possibly	multiple	times,	while	injecting	faults	on	the	TOE.

If	the	evaluator	is	able	to	acquire	the	original	SDO/SDE	or	a	known	result	from	the	DSC	processing	the
SDO/SDE,	the	test	is	a	‘Fail’,	otherwise,	the	test	is	a	‘Pass’.

FPT_MOD_EXT.1	Debug	Modes

TSS
The	evaluator	shall	examine	the	TSS	to	ensure	it	describes	the	mechanisms	the	TSF	employs	to	prevent
access	to	debug	modes	with	a	brief	description	of	each	debug	mode	supported.
Guidance
There	are	no	AGD	evaluation	activities	for	this	component.
KMD
There	are	no	KMD	evaluation	activities	for	this	component.
Tests
The	evaluator	shall	attempt	to	exercise	any	single	function	from	each	supported	debug	mode.	If	the	evaluator
is	able	to	exercise	any	function	from	any	of	the	supported	debug	modes,	the	test	is	a	‘Fail’,	otherwise,	the	test
is	a	‘Pass’.

FPT_PHP.3	Resistance	to	Physical	Attack

TSS
The	evaluator	shall	examine	the	TSS	to	ensure	it	describes	the	methods	used	by	the	TOE	to	detect	physical
tampering	and	how	the	TOE	will	respond	when	physical	tampering	has	been	detected.

The	evaluator	shall	also	examine	the	TSS	to	ensure	that	it	documents	the	temperature	and	voltage	ranges	in
which	the	TSF	is	assured	to	operate	properly.
Guidance
There	are	no	AGD	evaluation	activities	for	this	component.
KMD
There	are	no	KMD	evaluation	activities	for	this	component.
Tests
The	evaluator	shall	perform	the	following	tests:

Test	1:	Fault	Injection

Refer	to	the	testing	for	FPT_FLS.1/FI.

Test	2:	Temperature	and	Power	Analysis

The	following	testing	is	derived	from	[ISO	24759]	test	procedures	TE07.77.01	through	TE07.77.03:

The	evaluator	shall	configure	the	ambient	temperature	and	voltage	close	to	the	approximate	extreme	of	the
normal	operating	ranges	specified	in	the	TSS	and	verify	that	the	TSF	continues	to	function	as	expected.	The
evaluator	shall	determine	‘expected	functionality’	based	on	how	the	TSS	describes	the	TOE’s	reaction	to	an
environmental	failure.	For	example,	if	the	TSS	states	that	the	TOE’s	response	is	to	shut	down,	it	can	be

assumed	that	the	TOE	functions	as	expected	if	it	does	not	shut	down.	If	the	TSS	states	that	the	TOE’s
response	is	to	zeroize	certain	data,	it	can	be	assumed	that	the	TOE	functions	as	expected	if	the	evaluator
performs	functions	that	rely	on	known	data	values	and	obtain	results	that	indicate	non-zero	values.

The	evaluator	shall	then	extend	the	temperature	and	voltage	outside	of	the	specified	normal	range	and	verify
that	the	TOE	responds	in	the	manner	specified	in	the	ST.	If	the	TOE’s	response	is	to	zeroize	known	data,	the
evaluator	shall	return	the	ambient	temperature	and	voltage	to	a	normal	range,	perform	functions	that	rely	on
known	data	values,	and	observe	that	the	results	of	these	functions	are	consistent	with	known	values	of	zero.

FPT_PRO_EXT.1	Root	of	Trust

TSS
The	evaluator	shall	ensure	that	the	TSS	describes	either	a	pre-installed	identity	(contained	within	an	SDO),	or
a	process	on	how	the	TOE	creates	an	identity.	IEEE	802.1ar	is	one	example	of	a	standard	which	a	device	can
use	to	create	such	an	identity.

The	evaluator	shall	additionally	examine	the	TSS	to	ensure	that	it	describes	how	the	Root	of	Trust	is
immutable	or	otherwise	mutable	if	and	only	if	controlled	by	a	unique	identifiable	owner,	the	roles	this	owner
assumes	in	doing	so	(manufacturer	administrator,	owner	administrator,	etc.),	as	well	as	the	circumstances	in
which	the	Root	of	Trust	is	mutable.

[conditional]	For	an	immutable	Root	of	Trust,	the	evaluator	shall	ensure	there	are	no	RoT	update	functions.

[conditional]	For	a	mutable	Root	of	Trust,	the	evaluator	shall	ensure	the	Root	of	Trust	update	mechanism	uses
an	approved	method	for	authenticating	the	source	of	the	update.
Guidance
For	mutable	Root	of	Trust	data,	the	evaluator	shall	confirm	the	AGD	contains	an	approved	authenticated
method	for	modifying	the	Root	of	Trust	identity.
KMD
There	are	no	KMD	evaluation	activities	for	this	component.
Tests
Immutability

For	immutable	Root	of	Trust	identity,	the	evaluator	shall	confirm	a	successful	evaluation	of	FPT_PHP.1
(Physical	Protection).	Mutability

For	a	mutable	Root	of	Trust	identity,	the	evaluator	shall	perform	the	following	tests:

1.	 Create	or	use	an	authenticated	Root	of	Trust	identity,	confirm	the	authenticated	method	for	modifying
the	Root	of	Trust	identity	succeeds.

2.	 Create	or	use	an	unauthenticated	Root	of	Trust	identity,	confirm	the	target	fails	to	modify	the	Root	of
Trust	identity.

FPT_ROT_EXT.1	Root	of	Trust	Services

TSS
The	evaluator	shall	ensure	that	the	TSS	identifies	the	Roots	of	Trust	it	uses	(including	but	not	limited	to	the
Roots	of	Trust	identified	in	the	selections	in	this	requirement)	and	describes	their	function	in	the	context	of
the	TOE.
Guidance
There	are	no	AGD	evaluation	activities	for	this	component.
KMD
There	are	no	KMD	evaluation	activities	for	this	component.
Tests
Root	of	Trust	for	Storage

The	evaluator	shall	confirm	a	successful	evaluation	of	FCS_CKM.1/KEK,	FCS_STG_EXT.1,	FCS_STG_EXT.2,
FCS_STG_EXT.3,	FPT_PHP.3.	Root	of	Trust	for	Authorization

The	evaluator	shall	confirm	a	successful	evaluation	of	FIA_AFL_EXT.1.	Root	of	Trust	for	Measurement

The	evaluator	shall	confirm	a	successful	evaluation	of	FCS_COP.1/Hash	Root	of	Trust	for	Reporting

The	evaluator	shall	confirm	a	successful	evaluation	of	FCS_COP.1/SigGen.

FPT_ROT_EXT.2	Root	of	Trust	for	Storage

TSS
The	evaluator	shall	ensure	that	the	TSS	describes	how	the	Root	of	Trust	for	Storage	prevents	unauthorized
access	to	SDOs.	The	evaluator	shall	also	examine	the	TSS	to	verify	that	it	uses	approved	mechanisms	to
protect	the	integrity	of	SDOs.
Guidance
There	are	no	AGD	evaluation	activities	for	this	component.
KMD
There	are	no	KMD	evaluation	activities	for	this	component.
Tests
Testing	for	this	component	is	completed	through	evaluation	of	FCS_CKM.1/KEK,	FCS_STG_EXT.1,
FCS_STG_EXT.2,	FCS_STG_EXT.3,	and	FPT_PHP.3.

FPT_RPL_EXT.1	Replay	Prevention

TSS
The	evaluator	shall	examine	the	TSS	to	verify	that	it	describes	the	mechanism	employed	for	preventing	replay
of	user	authorization	of	operations	on	SDOs	and	that	access	is	denied	when	replay	is	detected.
Guidance
The	evaluator	shall	examine	the	operational	guidance	to	verify	that	it	describes	how	to	enforce	Replay
Prevention	if	configuration	is	necessary.
KMD
There	are	no	KMD	evaluation	activities	for	this	component.
Tests
The	evaluator	shall	perform	an	authorization	of	an	operation	on	an	SDO	and	capture	or	retain	that
authorization	for	reuse.	The	evaluator	shall	then	attempt	to	replay	that	same	authorization	and	ensure	that
the	DSC	does	not	allow	the	authorization	to	take	place.	If	the	replay	of	the	authorization	is	allowed	to	take
place	for	an	operation	on	SDOs,	the	test	is	a	‘Fail’,	otherwise,	the	test	is	a	‘Pass’.

FPT_STM.1	Reliable	Time	Stamps

TSS
The	evaluator	shall	examine	the	TSS	to	ensure	that	it	lists	each	security	function	that	makes	use	of	time.	The
TSS	provides	a	description	of	how	the	time	is	maintained	and	considered	reliable	in	the	context	of	each	of	the
time	related	functions.
Guidance
The	evaluator	shall	examine	the	guidance	documentation	to	ensure	it	instructs	the	administrator	how	to	set
the	time	or	indicates	any	configuration	steps	required	for	the	TSF	to	receive	time	data	from	an	external
source.
KMD
There	are	no	KMD	evaluation	activities	for	this	component.
Tests
The	evaluator	shall	perform	the	following	tests:

Test	1:	[conditional]:	If	the	TSF	provides	a	mechanism	to	manually	set	the	time,	the	evaluator	shall	use
the	guidance	documentation	to	set	the	time.	The	evaluator	shall	then	use	an	available	interface	to
observe	that	the	time	was	set	correctly.
Test	2:	[conditional]:	If	the	TSF	receives	time	data	from	some	source	outside	the	TOE,	the	evaluator
shall	use	the	guidance	documentation	to	configure	the	external	time	source	(if	applicable).	The	evaluator
shall	observe	that	the	time	has	been	set	to	the	expected	value.

FPT_TST.1	TSF	Testing

TSS
The	evaluator	shall	examine	the	TSS	and	other	vendor	documentation	and	ensure	they	describe	the	methods
used	to	verify	integrity	of	the	TSF	and	TSF	data.	The	evaluator	shall	also	verify	that	the	TSS	describes	how
the	tests	are	performed	automatically	and	autonomously	(without	intervention).
Guidance
The	evaluator	shall	examine	the	operational	guidance	to	ensure	it	provides	authorized	users	with	the
capability	to	verify	the	integrity	of	the	TSF	and	its	data.
KMD
There	are	no	KMD	evaluation	activities	for	this	component.
Tests

Test	1:	The	evaluator	shall	verify	that	the	DSC	performs	an	integrity	check	of	all	TSF,	including	data,	as
well	as	performing	KATs	for	those	functions.	The	evaluator	shall	verify	failures	using	malformed	known
answer	test	data	(for	example,	unexpected	input	or	output	values).
Test	2:	The	evaluator	shall	ensure	that	when	an	integrity	check	failure	occurs	specific	to	failing	KATs
and	failure	to	verify	the	integrity	of	the	TSF,	the	TOE	will	prevent	any	further	processing	of	the	current
TSF	and	user	data.

2.1.6	Resource	Utilization	(FRU)

FRU_FLT.1	Degraded	Fault	Tolerance

TSS
The	evaluator	shall	examine	the	TSS	and	other	vendor	documentation	and	ensure	they	describe	the	response
and	state	of	TSF	data	to	each	type	of	fault	injection	into	the	TOE.
Guidance
There	are	no	AGD	evaluation	activities	for	this	component.
KMD
There	are	no	KMD	evaluation	activities	for	this	component.
Tests
The	evaluator	shall	process	SDOs/SDEs	while	applying	each	type	of	identified	Fault	Injection	into	the	TSF.
The	evaluator	will	note	whether	the	TSF	response	is	as	noted	in	the	TSS	and	whether	the	state	can	be
confirmed.	If	the	response	and	state	are	as	documented,	the	test	is	a	‘Pass’,	otherwise,	the	test	is	a	‘Fail’.

2.2	Evaluation	Activities	for	Optional	SFRs
2.2.1	Cryptographic	Support	(FCS)

FCS_CKM.1	Cryptographic	Key	Generation

TSS
The	evaluator	shall	examine	the	TSS	to	verify	that	it	describes	how	the	TOE	obtains	a	cryptographic	key
through	importation	of	keys	from	external	sources	as	specified	in	FDP_ITC_EXT.1	and	FDP_ITC_EXT.2.	The
evaluator	shall	also	examine	the	TSS	to	determine	whether	it	describes	any	supported	asymmetric	or
symmetric	key	generation	functionality	consistent	with	the	claims	made	in	FCS_CKM.1.1.
Guidance
The	evaluator	shall	verify	that	the	guidance	instructs	the	administrator	how	to	configure	the	TOE	to	use	the
selected	key	types	for	all	uses	identified	in	the	ST.
KMD
The	evaluator	shall	confirm	that	the	KMD	describes:

The	parsing	interface	and	how	the	TSF	imports	keys	for	internal	use
The	asymmetric	key	generation	interfaces	and	how	the	TSF	internally	creates	asymmetric	keys,	if
claimed
The	symmetric	key	generation	interfaces	and	how	the	TSF	internally	creates	symmetric	keys,	if	claimed

If	the	TOE	uses	the	generated	key	in	a	key	chain/hierarchy	then	the	KMD	shall	describe	how	the	key	is	used
as	part	of	the	key	chain/hierarchy.
Tests
Testing	for	this	function	is	performed	in	conjunction	with	FDP_ITC_EXT.1	and	FDP_ITC_EXT.2.	If	asymmetric
or	symmetric	key	generation	functionality	is	claimed,	testing	for	this	function	is	also	performed	in	conjunction
with	FCS_CKM.1/AK	or	FCS_CKM.1/SK.

FCS_CKM.1/AK	Cryptographic	Key	Generation	(Asymmetric	Keys)

TSS
The	evaluator	shall	examine	the	TSS	to	verify	that	it	describes	how	the	TOE	generates	an	asymmetric	key
based	on	the	methods	selected	from	cPP	Table	13:	“Supported	Methods	for	Asymmetric	Key	Generation”.	The
evaluator	shall	examine	the	TSS	to	verify	that	it	describes	how	the	TOE	invokes	the	methods	selected	in	the
ST	from	the	same	table.	The	evaluator	shall	examine	the	TSS	to	verify	that	it	identifies	the	usage	for	each	row
identifier	(key	type,	key	size,	and	list	of	standards)	selected	in	the	ST.
Guidance
The	evaluator	shall	verify	that	the	AGD	guidance	instructs	the	administrator	how	to	configure	the	TOE	to	use
the	selected	key	types	for	all	uses	identified	in	the	ST.
KMD
If	the	TOE	uses	the	generated	key	in	a	key	chain/hierarchy	then	the	evaluator	shall	confirm	that	the	KMD
describes:

If	AK1	is	selected,	then	the	KMD	describes	which	methods	for	generating	p	and	q	are	used
How	the	key	is	used	as	part	of	the	key	chain/hierarchy.

Tests
The	following	tests	require	the	developer	to	provide	access	to	a	test	platform	that	provides	the	evaluator	with
tools	that	are	typically	not	found	on	factory	products.

AK1:	RSA	Key	Generation
The	below	tests	are	derived	from	The	186-4	RSA	Validation	System	(RSA2VS),	Updated	8	July	2014,	Section
6.2,	from	the	National	Institute	of	Standards	and	Technology.

The	evaluator	shall	verify	the	implementation	of	RSA	Key	Generation	by	the	TOE	using	the	Key	Generation
test.	This	test	verifies	the	ability	of	the	TSF	to	correctly	produce	values	for	the	key	components	including	the
public	verification	exponent	e,	the	private	prime	factors	p	and	q,	the	public	modulus	n	and	the	calculation	of
the	private	signature	exponent	d.

FIPS	186-4	Key	Pair	generation	specifies	5	methods	for	generating	the	primes	p	and	q.

These	are:

1.	 Random	Primes:
Provable	primes
Probable	primes

2.	 Primes	with	Conditions:
Primes	p1,	p2,	q1,	q2,	p	and	q	shall	all	be	provable	primes.
Primes	p1,	p2,	q1,	and	q2	shall	be	provable	primes	and	p	and	q	shall	be	probable	primes
Primes	p1,	p2,	q1,	q2,	p	and	q	shall	all	be	probable	primes.

To	test	the	key	generation	method	for	the	Random	Provable	primes	method	and	for	all	the	Primes	with
Conditions	methods,	the	evaluator	must	seed	the	TSF	key	generation	routine	with	sufficient	data	to
deterministically	generate	the	RSA	key	pair.

For	each	key	length	supported,	the	evaluator	shall	have	the	TSF	generate	25	key	pairs.	The	evaluator	shall
verify	the	correctness	of	the	TSF’s	implementation	by	comparing	values	generated	by	the	TSF	with	those
generated	by	a	known	good	implementation	using	the	same	input	parameters.

If	the	TOE	generates	Random	Probable	Primes	then	if	possible,	the	Random	Probable	primes	method	should
also	be	verified	against	a	known	good	implementation	as	described	above.	If	verification	against	a	known
good	implementation	is	not	possible,	the	evaluator	shall	have	the	TSF	generate	25	key	pairs	for	each
supported	key	length	nlen	and	verify	that	all	of	the	following	are	true:

n	=	p*q
p	and	q	are	probably	prime	according	to	Miller-Rabin	tests	with	error	probability	<2^(-125)
2^16	<	e	<	2^256	and	e	is	an	odd	integer

GCD(p-1,e)	=	1
GCD(q-1,e)	=	1
|p-q|	>	2^(nlen/2	-	100)
p	>=	squareroot(2)*(2^(nlen/2	-1))
q	>=	squareroot(2)*(2^(nlen/2	-1))
2^(nlen/2)	<	d	<	LCM(p-1,q-1)
e*d	=	1	mod	LCM(p-1,q-1)

AK2	&	AK3:	ECC	Key	Generation	with	NIST	and	Brainpool	Curves

These	tests	are	derived	from	The	FIPS	186-4	Elliptic	Curve	Digital	Signature	Algorithm	Validation	System
(ECDSA2VS),	Updated	18	Mar	2014,	Section	6.

ECC	Key	Generation	Test

For	each	selected	curve,	and	for	each	key	pair	generation	method	as	described	in	FIPS	186-4,	section	B.4,	the
evaluator	shall	require	the	implementation	under	test	to	generate	10	private/public	key	pairs	(d,	Q).	The
private	key,	d,	shall	be	generated	using	a	random	bit	generator	as	specified	in	FCS_RBG_EXT.1.	The	private
key,	d,	is	used	to	compute	the	public	key,	Q’.	The	evaluator	shall	confirm	that	0<d<n	(where	n	is	the	order	of
the	group),	and	the	computed	value	Q’	is	then	compared	to	the	generated	public/private	key	pairs’	public	key,
Q,	to	confirm	that	Q	is	equal	to	Q’.

Public	Key	Validation	(PKV)	Test

For	each	supported	curve,	the	evaluator	shall	generate	12	private/public	key	pairs	using	the	key	generation
function	of	a	known	good	implementation	and	modify	six	of	the	public	key	values	so	that	they	are	incorrect,
leaving	six	values	unchanged	(i.e.,	correct).	To	determine	correctness,	the	evaluator	shall	submit	the	12	key
pairs	to	the	public	key	validation	(PKV)	function	of	the	TOE	and	shall	confirm	that	the	results	correspond	as
expected	to	the	modified	and	unmodified	values.

AK4:	DSA	Key	Generation	using	Finite-Field	Cryptography	(FFC)

The	evaluator	shall	verify	the	implementation	of	the	Parameters	Generation	and	the	Key	Generation	for	FFC
by	the	TOE	using	the	Parameter	Generation	and	Key	Generation	test.	This	test	verifies	the	ability	of	the	TSF
to	correctly	produce	values	for	the	field	prime	p,	the	cryptographic	prime	q	(dividing	p-1),	the	cryptographic
group	generator	g,	and	the	calculation	of	the	private	key	x	and	public	key	y.

The	Parameter	generation	specifies	2	ways	(or	methods)	to	generate	the	cryptographic	prime	q	and	the	field
prime	p:

Primes	q	and	p	shall	both	be	provable	primes
Primes	q	and	field	prime	p	shall	both	be	probable	primes

and	two	ways	to	generate	the	cryptographic	group	generator	g:

Generator	g	constructed	through	a	verifiable	process
Generator	g	constructed	through	an	unverifiable	process.

The	Key	generation	specifies	2	ways	to	generate	the	private	key	x:

len(q)	bit	output	of	RBG	where	1	≤	x	≤	q-1
len(q)	+	64	bit	output	of	RBG,	followed	by	a	mod	q-1	operation	and	a	+1	operation,	where	1≤	x≤q-1.

The	security	strength	of	the	RBG	must	be	at	least	that	of	the	security	offered	by	the	FFC	parameter	set.

To	test	the	cryptographic	and	field	prime	generation	method	for	the	provable	primes	method	or	the	group
generator	g	for	a	verifiable	process,	the	evaluator	must	seed	the	TSF	parameter	generation	routine	with
sufficient	data	to	deterministically	generate	the	parameter	set.

For	each	key	length	supported,	the	evaluator	shall	have	the	TSF	generate	25	parameter	sets	and	key	pairs.
The	evaluator	shall	verify	the	correctness	of	the	TSF’s	implementation	by	comparing	values	generated	by	the
TSF	with	those	generated	from	a	known	good	implementation.	Verification	must	also	confirm

g	!=	0,1
q	divides	p-1
g^q	mod	p	=	1
g^x	mod	p	=	y

for	each	FFC	parameter	set	and	key	pair.

AK5:	Curve25519	Key	Generation

The	evaluator	shall	require	the	implementation	under	test	(IUT)	to	generate	10	private/public	key	pairs.	The
private	key	shall	be	generated	as	specified	in	RFC	7748	using	an	approved	random	bit	generator	(RBG)	and
shall	be	written	in	littleendian	order	(least	significant	byte	first.	To	determine	correctness,	the	evaluator	shall
submit	the	generated	key	pairs	to	the	public	key	verification	(PKV)	function	of	a	known	good	implementation.

Note:	Assuming	the	PKV	function	of	the	good	implementation	will	(using	little-endian	order):

Confirm	the	private	and	public	keys	are	32-byte	values
Confirm	the	three	least	significant	bits	of	the	first	byte	of	the	private	key	are	zero
Confirm	the	most	significant	bit	of	the	last	byte	is	zero
Confirm	the	second	most	significant	bit	of	the	last	byte	is	one
Calculate	the	expected	public	key	from	the	private	key	and	confirm	it	matches	the	supplied	public	key

The	evaluator	shall	generate	10	private/public	key	pairs	using	the	key	generation	function	of	a	known	good
implementation	and	modify	5	of	the	public	key	values	so	that	they	are	incorrect,	leaving	five	values
unchanged	(i.e.	correct).	The	evaluator	shall	obtain	in	response	a	set	of	10	PASS/FAIL	values.

FCS_CKM.1/SK	Cryptographic	Key	Generation	(Symmetric	Encryption	Key)

TSS
The	evaluator	shall	examine	the	TSS	to	verify	that	it	describes	how	the	TOE	obtains	an	SK	through	direct
generation	as	specified	in	FCS_RBG_EXT.1,	FCS_COP.1/KDF,	or	FCS_COP.1/PBKDF.	The	evaluator	shall
review	the	TSS	to	verify	that	it	describes	how	the	ST	invokes	the	functionality	described	by	FCS_RBG_EXT.1
and	FCS_COP.1/PBKDF	where	applicable.

[conditional]	If	the	symmetric	key	is	generated	by	an	RBG,	the	evaluator	shall	review	the	TSS	to	determine
that	it	describes	how	the	functionality	described	by	FCS_RBG_EXT.1	is	invoked.	The	evaluator	uses	the
description	of	the	RBG	functionality	in	FCS_RBG_EXT.1	or	documentation	available	for	the	operational
environment	to	determine	that	the	key	size	being	requested	is	greater	than	or	equal	to	the	key	size	and	mode
to	be	used	for	the	encryption/decryption	of	the	data.
Guidance
The	evaluator	shall	verify	that	the	AGD	guidance	instructs	the	administrator	how	to	configure	the	TOE	to	use
the	selected	key	types	for	all	uses	identified	in	the	ST.
KMD
The	evaluator	shall	confirm	that	the	KMD	describes,	as	applicable:

The	RBG	interface	and	how	the	ST	uses	it	in	symmetric	key	generation
The	KDF	interface	and	how	the	ST	uses	it	in	symmetric	key	generation
The	PBKDF	interface	and	how	the	ST	uses	it	in	symmetric	key	generation
If	the	TOE	uses	the	generated	key	in	a	key	chain/hierarchy	then	the	KMD	shall	describe	how	the	ST	uses
the	key	as	part	of	the	key	chain/hierarchy.

Tests
For	each	selected	key	generation	method,	the	evaluator	shall	configure	the	selected	generation	capability.
The	evaluator	shall	use	the	description	of	the	RBG	interface	to	verify	that	the	TOE	requests	and	receives	an
amount	of	RBG	output	greater	than	or	equal	to	the	requested	key	size.	The	evaluator	shall	perform	the	tests
as	described	for	FCS_COP.1/KDF	and	FCS_COP.1/PBKDF.

FCS_CKM.1/KEK	Cryptographic	Key	Generation	(Key	Encryption	Key)

TSS
The	evaluator	shall	examine	the	key	hierarchy	section	of	the	TSS	to	ensure	that	the	formation	of	all	KEKs	is
described	and	that	the	key	sizes	match	that	described	by	the	ST	author.	The	evaluator	shall	examine	the	key
hierarchy	section	of	the	TSS	to	ensure	that	each	KEK	encrypts	keys	of	equal	or	lesser	security	strength	using
one	of	the	selected	methods.

[conditional]	If	the	KEK	is	generated	according	to	an	asymmetric	key	scheme,	the	evaluator	shall	review	the
TSS	to	determine	that	it	describes	how	the	functionality	described	by	FCS_CKM.1/AK	is	invoked.	The
evaluator	uses	the	description	of	the	key	generation	functionality	in	FCS_CKM.1/AK	or	documentation
available	for	the	operational	environment	to	determine	that	the	key	strength	being	requested	is	greater	than
or	equal	to	112	bits.

[conditional]	If	the	KEK	is	generated	according	to	a	symmetric	key	scheme,	the	evaluator	shall	review	the	TSS
to	determine	that	it	describes	how	the	functionality	described	by	FCS_CKM.1/SK	is	invoked.	The	evaluator
uses	the	description	of	the	RBG	functionality	in	FCS_RBG_EXT.1,	or	the	key	derivation	functionality	in	either
FCS_CKM_EXT.5	or	FCS_COP.1/PBKDF,	depending	on	the	key	generation	method	claimed,	to	determine	that
the	key	size	being	requested	is	greater	than	or	equal	to	the	key	size	and	mode	to	be	used	for	the
encryption/decryption	of	the	data.

[conditional]	If	the	KEK	is	formed	from	derivation,	the	evaluator	shall	verify	that	the	TSS	describes	the
method	of	derivation	and	that	this	method	is	consistent	with	FCS_CKM_EXT.5.

Guidance
There	are	no	guidance	evaluation	activities	for	this	component.
KMD
The	evaluator	shall	iterate	through	each	of	the	methods	selected	by	the	ST	and	confirm	that	the	KMD
describes	the	applicable	selected	methods.
Tests
The	evaluator	shall	iterate	through	each	of	the	methods	selected	by	the	ST	and	perform	all	applicable	tests
from	the	selected	methods.

FCS_CKM.2	Cryptographic	Key	Establishment

TSS
The	evaluator	shall	examine	the	TSS	to	ensure	that	ST	supports	at	least	one	key	establishment	scheme.	The
evaluator	also	ensures	that	for	each	key	establishment	scheme	selected	by	the	ST	in	FCS_CKM.2.1	it	also
supports	one	or	more	corresponding	methods	selected	in	FCS_COP.1/KAT.	If	the	ST	selects	RSA	in
FCS_CKM.2.1,	then	the	TOE	must	support	one	or	more	of	“KAS1,”	or	“KAS2,”	“KTS-OAEP,”	from
FCS_COP.1/KAT.	If	the	ST	selects	elliptic	curve-based,	then	the	TOE	must	support	one	or	more	of	“ECDH-
NIST”	or	“ECDH-BPC”	from	FCS_COP.1/KAT.	If	the	ST	selects	Diffie-Hellman-based	key	establishment,	then
the	TOE	must	support	“DH”	from	FCS_COP.1/KAT.

Guidance
The	evaluator	shall	verify	that	the	guidance	instructs	the	administrator	how	to	configure	the	TOE	to	use	the

selected	key	establishment	scheme.
KMD
There	are	no	KMD	evaluation	activities	for	this	component.
Tests
Testing	for	this	SFR	is	performed	under	the	corresponding	functions	in	FCS_COP.1/KAT.

FCS_CKM.4	Cryptographic	Key	Destruction

TSS
The	evaluator	shall	examine	the	TSS	to	ensure	it	lists	all	relevant	keys	and	keying	material	(describing	the
source	of	the	data,	all	memory	types	in	which	the	data	is	stored	(covering	storage	both	during	and	outside	of
a	session,	and	both	plaintext	and	non-plaintext	forms	of	the	data)),	all	relevant	destruction	situations
(including	the	point	in	time	at	which	the	destruction	occurs;	e.g.	factory	reset	or	device	wipe	function,	change
of	authorization	data,	change	of	DEK,	completion	of	use	of	an	intermediate	key)	and	the	destruction	method
used	in	each	case.	The	evaluator	shall	confirm	that	the	description	of	the	data	and	storage	locations	is
consistent	with	the	functions	carried	out	by	the	TOE	(e.g.	that	all	keys	in	the	key	chain	are	accounted	for).
(Where	keys	are	stored	encrypted	or	wrapped	under	another	key	then	this	may	need	to	be	explained	in	order
to	allow	the	evaluator	to	confirm	the	consistency	of	the	description	of	keys	with	the	TOE	functions).

The	evaluator	shall	check	that	the	TSS	identifies	any	configurations	or	circumstances	that	may	not	conform	to
the	key	destruction	requirement	(see	further	discussion	in	the	AGD	section	below).	Note	that	reference	may
be	made	to	the	AGD	for	description	of	the	detail	of	such	cases	where	destruction	may	be	prevented	or
delayed.

Where	the	ST	specifies	the	use	of	“a	value	that	does	not	contain	any	sensitive	data”	to	overwrite	keys,	the
evaluator	shall	examine	the	TSS	to	ensure	that	it	describes	how	that	pattern	is	obtained	and	used,	and	that
this	justifies	the	claim	that	the	pattern	does	not	contain	any	sensitive	data.

Guidance
The	evaluator	shall	check	that	the	guidance	documentation	for	the	TOE	requires	users	to	ensure	that	the	TOE
remains	under	the	user’s	control	while	a	session	is	active.

A	TOE	may	be	subject	to	situations	that	could	prevent	or	delay	data	destruction	in	some	cases.	The	evaluator
shall	check	that	the	guidance	documentation	identifies	configurations	or	circumstances	that	may	not	strictly
conform	to	the	key	destruction	requirement,	and	that	this	description	is	consistent	with	the	relevant	parts	of
the	TSS	(and	KMD).	The	evaluator	shall	check	that	the	guidance	documentation	provides	guidance	on
situations	where	key	destruction	may	be	delayed	at	the	physical	layer,	identifying	any	additional	mitigation
actions	for	the	user	(e.g.	there	might	be	some	operation	the	user	can	invoke,	or	the	user	might	be	advised	to
retain	control	of	the	device	for	some	particular	time	to	maximise	the	probability	that	garbage	collection	will
have	occurred).

For	example,	when	the	TOE	does	not	have	full	access	to	the	physical	memory,	it	is	possible	that	the	storage
may	implement	wear-levelling	and	garbage	collection.	This	may	result	in	additional	copies	of	the	data	that	are
logically	inaccessible	but	persist	physically.	Where	available,	the	TOE	might	then	describe	use	of	the	TRIM
command	and	garbage	collection	to	destroy	these	persistent	copies	upon	their	deletion	(this	would	be
explained	in	TSS	and	guidance	documentation).

Where	TRIM	is	used	then	the	TSS	or	guidance	documentation	is	also	expected	to	describe	how	the	keys	are
stored	such	that	they	are	not	inaccessible	to	TRIM,	(e.g.	they	would	need	not	to	be	contained	in	a	file	less
than	982	bytes	which	would	be	completely	contained	in	the	master	file	table.

KMD
The	evaluator	shall	examine	the	KMD	to	verify	that	it	identifies	and	describes	the	interfaces	that	are	used	to
service	commands	to	read/write	memory.	The	evaluator	shall	examine	the	interface	description	for	each
different	media	type	to	ensure	that	the	interface	supports	the	selections	made	by	the	ST	author.

45	The	evaluator	shall	examine	the	KMD	to	ensure	that	all	keys	and	keying	material	identified	in	the	TSS	and
KMD	have	been	accounted	for.

46	Note	that	where	selections	include	‘destruction	of	reference	to	the	key	directly	followed	by	a	request	for
garbage	collection’	(for	volatile	memory)	then	the	evaluator	shall	examine	the	KMD	to	ensure	that	it	explains
the	nature	of	the	destruction	of	the	reference,	the	request	for	garbage	collection,	and	of	the	garbage
collection	process	itself.

Tests
The	following	tests	require	the	developer	to	provide	access	to	a	test	platform	that	provides	the	evaluator	with
tools	that	are	typically	not	found	on	factory	products.

The	evaluator	shall	perform	the	following	tests:

Test	1:	Applied	to	each	key	or	keying	material	held	as	plaintext	in	volatile	memory	and	subject	to
destruction	by	overwrite	by	the	TOE	(whether	or	not	the	plaintext	value	is	subsequently	encrypted	for
storage	in	volatile	or	non-volatile	memory).

The	evaluator	shall:
1.	 Record	the	value	of	the	key	or	keying	material.
2.	 Cause	the	TOE	to	dump	the	SDO/SDE	memory	of	the	TOE	into	a	binary	file.
3.	 Search	the	content	of	the	binary	file	created	in	Step	#2	to	locate	all	instances	of	the	known	key

value	from	Step	#1.

Note	that	the	primary	purpose	of	Step	#3	is	to	demonstrate	that	appropriate	search	commands	are
being	used	for	Steps	#8	and	#9.

4.	 Cause	the	TOE	to	perform	normal	cryptographic	processing	with	the	key	from	Step	#1.
5.	 Cause	the	TOE	to	destroy	the	key.
6.	 Cause	the	TOE	to	stop	execution	but	not	exit.
7.	 Cause	the	TOE	to	dump	the	SDO/SDE	memory	of	the	TOE	into	a	binary	file.
8.	 Search	the	content	of	the	binary	file	created	in	Step	#7	for	instances	of	the	known	key	value	from

Step	#1.
9.	 Break	the	key	value	from	Step	#1	into	an	evaluator-chosen	set	of	fragments	and	perform	a	search

using	each	fragment.	(Note	that	the	evaluator	shall	first	confirm	with	the	developer	how	the	key	is
normally	stored,	in	order	to	choose	fragment	sizes	that	are	the	same	or	smaller	than	any
fragmentation	of	the	data	that	may	be	implemented	by	the	TOE.	The	endianness	or	byte-order
should	also	be	taken	into	account	in	the	search.)

Steps	#1-8	ensure	that	the	complete	key	does	not	exist	anywhere	in	volatile	memory.	If	a	copy	is	found,
then	the	test	fails.

Step	#9	ensures	that	partial	key	fragments	do	not	remain	in	memory.	If	the	evaluator	finds	a	32-or-
greater-consecutive-bit	fragment,	then	fail	immediately.	Otherwise,	there	is	a	chance	that	it	is	not	within
the	context	of	a	key	(e.g.,	some	random	bits	that	happen	to	match).	If	this	is	the	case	the	test	should	be
repeated	with	a	different	key	in	Step	#1.	If	a	fragment	is	also	found	in	this	repeated	run	then	the	test
fails	unless	the	developer	provides	a	reasonable	explanation	for	the	collision,	then	the	evaluator	may	give
a	pass	on	this	test.

Test	2:	Applied	to	each	key	and	keying	material	held	in	non-volatile	memory	and	subject	to	destruction
by	overwrite	by	the	TOE.
1.	 Record	the	value	of	the	key	or	keying	material.
2.	 Cause	the	TOE	to	perform	normal	cryptographic	processing	with	the	key	from	Step	#1.
3.	 Search	the	non-volatile	memory	the	key	was	stored	in	for	instances	of	the	known	key	value	from

Step	#1.

Note	that	the	primary	purpose	of	Step	#3	is	to	demonstrate	that	appropriate	search	commands	are
being	used	for	Steps	#5	and	#6.

4.	 Cause	the	TOE	to	clear	the	key.
5.	 Search	the	non-volatile	memory	in	which	the	key	was	stored	for	instances	of	the	known	key	value

from	Step	#1.	If	a	copy	is	found,	then	the	test	fails.
6.	 Break	the	key	value	from	Step	#1	into	an	evaluator-chosen	set	of	fragments	and	perform	a	search

using	each	fragment.	(Note	that	the	evaluator	shall	first	confirm	with	the	developer	how	the	key	is
normally	stored,	in	order	to	choose	fragment	sizes	that	are	the	same	or	smaller	than	any
fragmentation	of	the	data	that	may	be	implemented	by	the	TOE.	The	endianness	or	byte-order
should	also	be	taken	into	account	in	the	search).

Step	#6	ensures	that	partial	key	fragments	do	not	remain	in	non-volatile	memory.	If	the	evaluator	finds	a
32-or-greater-consecutive-bit	fragment,	then	fail	immediately.	Otherwise,	there	is	a	chance	that	it	is	not
within	the	context	of	a	key	(e.g.,	some	random	bits	that	happen	to	match).	If	this	is	the	case	the	test
should	be	repeated	with	a	different	key	in	Step	#1.	If	a	fragment	is	also	found	in	this	repeated	run	then
the	test	fails	unless	the	developer	provides	a	reasonable	explanation	for	the	collision,	then	the	evaluator
may	give	a	pass	on	this	test.
Test	3:	Applied	to	each	key	and	keying	material	held	in	non-volatile	memory	and	subject	to	destruction
by	overwrite	by	the	TOE.
1.	 Record	memory	of	the	key	or	keying	material.
2.	 Cause	the	TOE	to	perform	normal	cryptographic	processing	with	the	key	from	Step	#1.
3.	 Cause	the	TOE	to	clear	the	key.	Record	the	value	to	be	used	for	the	overwrite	of	the	key.
4.	 Examine	the	memory	from	Step	#1	to	ensure	the	appropriate	pattern	(recorded	in	Step	#3)	is	used.

The	test	succeeds	if	correct	pattern	is	found	in	the	memory	location.	If	the	pattern	is	not	found,	then	the
test	fails.

FCS_CKM_EXT.4	Cryptographic	Key	and	Key	Material	Destruction	Timing

TSS
The	evaluator	shall	verify	the	TSS	provides	a	high-level	description	of	what	it	means	for	keys	and	key	material
to	be	no	longer	needed	and	when	this	data	should	be	expected	to	be	destroyed.
Guidance
There	are	no	guidance	evaluation	activities	for	this	component.
KMD
The	evaluator	shall	verify	that	the	KMD	includes	a	description	of	the	areas	where	keys	and	key	material
reside	and	when	this	data	is	no	longer	needed.

The	evaluator	shall	verify	that	the	KMD	includes	a	key	lifecycle	that	includes	a	description	where	key
materials	reside,	how	the	key	materials	are	used,	how	it	is	determined	that	keys	and	key	material	are	no
longer	needed,	and	how	the	data	is	destroyed	once	it	is	no	longer	needed.	The	evaluator	shall	also	verify	that
all	key	destruction	operations	are	performed	in	a	manner	specified	by	FCS_CKM.4.

Tests
There	are	no	test	evaluation	activities	for	this	component

FCS_CKM_EXT.5	Cryptographic	Key	Derivation

TSS
The	evaluator	shall	check	that	the	TSS	includes	a	description	of	the	key	derivation	functions	and	shall	check
that	this	uses	a	key	derivation	algorithm	and	key	sizes	according	to	the	specification	selected	in	the	ST	out	of
the	table	as	provided	in	the	cPP	table	per	row.	The	evaluator	shall	confirm	that	the	TSS	supports	the	selected
methods.

If	KeyDrv5	is	selected,	the	evaluator	shall	verify	that	the	TSS	shows	that	the	total	length	of	the	concatenated
keys	used	as	input	to	the	KDF	is	greater	than	or	equal	to	the	length	of	the	output	from	the	KDF.

[conditional]	If	key	combination	is	used	to	form	a	KEK,	the	evaluator	shall	verify	that	the	TSS	describes	the
method	of	combination	and	that	this	method	is	either	an	XOR,	a	KDF,	or	encryption.

[conditional]	If	a	KDF	is	used	to	form	a	KEK,	the	evaluator	shall	ensure	that	the	TSS	includes	a	description	of
the	key	derivation	function	and	shall	verify	the	key	derivation	uses	an	approved	derivation	mode	and	key
expansion	algorithm	according	to	SP	800-108.

[conditional]	If	key	concatenation	is	used	to	derive	KEKs	(KeyDrv5),	the	evaluator	shall	ensure	the	TSS
includes	a	description	of	the	randomness	extraction	step,	including	the	following:

The	description	must	include	how	an	approved	untruncated	MAC	function	is	being	used	for	the
randomness	extraction	step	and	the	evaluator	must	verify	the	TSS	describes	that	the	output	length	(in
bits)	of	the	MAC	function	is	at	least	as	large	as	the	targeted	security	strength	(in	bits)	of	the	parameter
set	employed	by	the	key	establishment	scheme	(see	Tables	1-3	of	SP	800-56C).
The	description	must	include	how	the	MAC	function	being	used	for	the	randomness	extraction	step	is
related	to	the	PRF	used	in	the	key	expansion	and	verify	the	TSS	description	includes	the	correct	MAC
function:

If	an	HMAC-hash	is	used	in	the	randomness	extraction	step,	then	the	same	HMAC-hash	(with	the
same	hash	function	hash)	is	used	as	the	PRF	in	the	key	expansion	step.
If	an	AES-CMAC	(with	key	length	128,	192,	or	256	bits)	is	used	in	the	randomness	extraction	step,
then	AES-CMAC	with	a	128-bit	key	is	used	as	the	PRF	in	the	key	expansion	step.

The	description	must	include	the	lengths	of	the	salt	values	being	used	in	the	randomness	extraction	step
and	the	evaluator	shall	verify	the	TSS	description	includes	correct	salt	lengths:

If	an	HMAC-hash	is	being	used	as	the	MAC,	the	salt	length	can	be	any	value	up	to	the	maximum	bit
length	permitted	for	input	to	the	hash	function	hash.
If	an	AES-CMAC	is	being	used	as	the	MAC,	the	salt	length	shall	be	the	same	length	as	the	AES	key
(i.e.	128,	192,	or	256	bits).

Guidance
The	evaluator	shall	verify	that	the	AGD	guidance	instructs	the	administrator	how	to	configure	the	TOE	to	use
the	selected	key	types	for	all	uses	identified	in	the	ST.
KMD
The	evaluator	shall	examine	the	KMD	to	ensure	that:

The	KMD	describes	the	complete	key	derivation	chain	and	the	description	must	be	consistent	with	the
description	in	the	TSS.	For	all	key	derivations	the	TOE	must	use	a	method	as	described	in	the	cPP	table.
There	should	be	no	uncertainty	about	how	a	key	is	derived	from	another	in	the	chain.
The	length	of	the	key	derivation	key	is	defined	by	the	PRF.	The	evaluator	should	check	whether	the	key
derivation	key	length	is	consistent	with	the	length	provided	by	the	selected	PRF.
If	a	key	is	used	as	an	input	to	several	KDFs,	each	invocation	must	use	a	distinct	context	string.	If	the
output	of	a	KDF	execution	is	used	for	multiple	cryptographic	keys,	those	keys	must	be	disjoint	segments
of	the	output.

Tests
The	following	tests	require	the	developer	to	provide	access	to	a	test	platform	that	provides	the	evaluator	with
tools	that	are	typically	not	found	on	factory	products.

The	evaluator	shall	perform	one	or	more	of	the	following	tests	to	verify	the	correctness	of	the	key	derivation
function,	depending	on	the	specific	functions	that	are	supported:

Preconditions	for	testing:

Specification	of	input	parameter	to	the	key	derivation	function	to	be	tested
Specification	of	further	required	input	parameters
Access	to	derived	keys

The	following	table	maps	the	data	fields	in	the	tests	below	to	the	notations	used	in	SP	800-108	and	SP	800-
56C

Data	Fields Notations

SP	800-108 SP	800-56C

Pseudorandom	function PRF PRF

Counter	length r r

Length	of	output	of	PRF r r

Length	of	derived	keying	material L L

Length	of	input	values I_length I_length

Pseudorandom	input	values	I K1	(key	derivation	key) Z	(shared	secret)

Pseudorandom	salt	values S

Randomness	extraction	MAC n/a MAC

The	below	tests	are	derived	from	Key	Derivation	using	Pseudorandom	Functions	(SP	800-108)	Validation
System	(KBKDFVS),	Updated	4	January	2016,	Section	6.2,	from	the	National	Institute	of	Standards	and
Technology.

KeyDrv1:	Counter	Mode	Tests:

The	evaluator	shall	determine	the	following	characteristics	of	the	key	derivation	function:

One	or	more	pseudorandom	functions	that	are	supported	by	the	implementation	(PRF).
One	or	more	of	the	values	{8,	16,	24,	32}	that	equal	the	length	of	the	binary	representation	of	the
counter	(r).
The	length	(in	bits)	of	the	output	of	the	PRF	(h).
Minimum	and	maximum	values	for	the	length	(in	bits)	of	the	derived	keying	material	(L).	These	values
can	be	equal	if	only	one	value	of	L	is	supported.	These	must	be	evenly	divisible	by	h.
Up	to	two	values	of	L	that	are	NOT	evenly	divisible	by	h.
Location	of	the	counter	relative	to	fixed	input	data:	before,	after,	or	in	the	middle.

Counter	before	fixed	input	data:	fixed	input	data	string	length	(in	bytes),	fixed	input	data	string
value.
Counter	after	fixed	input	data:	fixed	input	data	string	length	(in	bytes),	fixed	input	data	string	value.
Counter	in	the	middle	of	fixed	input	data:	length	of	data	before	counter	(in	bytes),	length	of	data
after	counter	(in	bytes),	value	of	string	input	before	counter,	value	of	string	input	after	counter.

The	length	(I_length)	of	the	input	values	I.

For	each	supported	combination	of	I_length,	MAC,	salt,	PRF,	counter	location,	value	of	r,	and	value	of	L,	the
evaluator	shall	generate	10	test	vectors	that	include	pseudorandom	input	values	I,	and	pseudorandom	salt
values.	If	there	is	only	one	value	of	L	that	is	evenly	divisible	by	h,	the	evaluator	shall	generate	20	test	vectors
for	it.	For	each	test	vector,	the	evaluator	shall	supply	this	data	to	the	TOE	in	order	to	produce	the	keying
material	output.

The	results	from	each	test	may	either	be	obtained	by	the	evaluator	directly	or	by	supplying	the	inputs	to	the
implementer	and	receiving	the	results	in	response.	To	determine	correctness,	the	evaluator	shall	compare	the
resulting	values	to	those	obtained	by	submitting	the	same	inputs	to	a	known	good	implementation.

KeyDrv2:	Feedback	Mode	Tests:

The	evaluator	shall	determine	the	following	characteristics	of	the	key	derivation	function:

One	or	more	pseudorandom	functions	that	are	supported	by	the	implementation	(PRF).
The	length	(in	bits)	of	the	output	of	the	PRF	(h).
Minimum	and	maximum	values	for	the	length	(in	bits)	of	the	derived	keying	material	(L).	These	values
can	be	equal	if	only	one	value	of	L	is	supported.	These	must	be	evenly	divisible	by	h.
Up	to	two	values	of	L	that	are	NOT	evenly	divisible	by	h.
Whether	or	not	zero-length	IVs	are	supported.
Whether	or	not	a	counter	is	used,	and	if	so:

One	or	more	of	the	values	{8,	16,	24,	32}	that	equal	the	length	of	the	binary	representation	of	the
counter	(r).
Location	of	the	counter	relative	to	fixed	input	data:	before,	after,	or	in	the	middle.

Counter	before	fixed	input	data:	fixed	input	data	string	length	(in	bytes),	fixed	input	data	string
value.
Counter	after	fixed	input	data:	fixed	input	data	string	length	(in	bytes),	fixed	input	data	string
value.
Counter	in	the	middle	of	fixed	input	data:	length	of	data	before	counter	(in	bytes),	length	of
data	after	counter	(in	bytes),	value	of	string	input	before	counter,	value	of	string	input	after
counter.

The	length	(I_length)	of	the	input	values	L.

For	each	supported	combination	of	I_length,	MAC,	salt,	PRF,	counter	location	(if	a	counter	is	used),	value	of	r
(if	a	counter	is	used),	and	value	of	L,	the	evaluator	shall	generate	10	test	vectors	that	include	pseudorandom
input	values	I	and	pseudorandom	salt	values.	If	the	KDF	supports	zero-length	IVs,	five	of	these	test	vectors
will	be	accompanied	by	pseudorandom	IVs	and	the	other	five	will	use	zerolength	IVs.	If	zero-length	IVs	are
not	supported,	each	test	vector	will	be	accompanied	by	an	pseudorandom	IV.	If	there	is	only	one	value	of	L
that	is	evenly	divisible	by	h,	the	evaluator	shall	generate	20	test	vectors	for	it.

For	each	test	vector,	the	evaluator	shall	supply	this	data	to	the	TOE	in	order	to	produce	the	keying	material
output.	The	results	from	each	test	may	either	be	obtained	by	the	evaluator	directly	or	by	supplying	the	inputs
to	the	implementer	and	receiving	the	results	in	response.	To	determine	correctness,	the	evaluator	shall
compare	the	resulting	values	to	those	obtained	by	submitting	the	same	inputs	to	a	known	good
implementation.

KeyDrv3:	Double	Pipeline	Iteration	Mode	Tests:

The	evaluator	shall	determine	the	following	characteristics	of	the	key	derivation	function:

One	or	more	pseudorandom	functions	that	are	supported	by	the	implementation	(PRF).
The	length	(in	bits)	of	the	output	of	the	PRF	(h).
Minimum	and	maximum	values	for	the	length	(in	bits)	of	the	derived	keying	material	(L).	These	values
can	be	equal	if	only	one	value	of	L	is	supported.	These	must	be	evenly	divisible	by	h.
Up	to	two	values	of	L	that	are	NOT	evenly	divisible	by	h.
Whether	or	not	a	counter	is	used,	and	if	so:

One	or	more	of	the	values	{8,	16,	24,	32}	that	equal	the	length	of	the	binary	representation	of	the
counter	(r).
Location	of	the	counter	relative	to	fixed	input	data:	before,	after,	or	in	the	middle.

Counter	before	fixed	input	data:	fixed	input	data	string	length	(in	bytes),	fixed	input	data	string
value.
Counter	after	fixed	input	data:	fixed	input	data	string	length	(in	bytes),	fixed	input	data	string
value.
Counter	in	the	middle	of	fixed	input	data:	length	of	data	before	counter	(in	bytes),	length	of
data	after	counter	(in	bytes),	value	of	string	input	before	counter,	value	of	string	input	after

counter.
The	length	(I_length)	of	the	input	values	I.

For	each	supported	combination	of	I_length,	MAC,	salt,	PRF,	counter	location	(if	a	counter	is	used),	value	of	r
(if	a	counter	is	used),	and	value	of	L,	the	evaluator	shall	generate	10	test	vectors	that	include	pseudorandom
input	values	I,	and	pseudorandom	salt	values.	If	there	is	only	one	value	of	L	that	is	evenly	divisible	by	h,	the
evaluator	shall	generate	20	test	vectors	for	it.

For	each	test	vector,	the	evaluator	shall	supply	this	data	to	the	TOE	in	order	to	produce	the	keying	material
output.	The	results	from	each	test	may	either	be	obtained	by	the	evaluator	directly	or	by	supplying	the	inputs
to	the	implementer	and	receiving	the	results	in	response.	To	determine	correctness,	the	evaluator	shall
compare	the	resulting	values	to	those	obtained	by	submitting	the	same	inputs	to	a	known	good
implementation.

KeyDrv4:	Intermediate	Keys	Method

If	the	selected	algorithm	is	a	hash	then	the	testing	of	the	hash	primitive	is	the	only	required	Evaluation
Activity.	If	the	selected	algorithm	is	XOR	then	no	separate	primitive	testing	is	necessary.

KeyDrv5:	Concatenated	Keys	Method

The	evaluator	should	confirm	that	the	combined	length	of	the	concatenated	keys	should	be	at	least	as	long	as
the	keysize	of	the	selected	methods.	There	are	no	other	tests	other	than	for	the	methods	selected	for	this	row
performed	for	KeyDrv1,	KeyDrv2,	and	KeyDrv3.

KeyDrv6:	Two	Keys	Method

The	evaluator	should	confirm	that	the	combined	length	of	the	two	keys	should	be	at	least	as	long	as	the
keysize	of	the	selected	methods.	There	are	no	other	tests	other	than	for	the	methods	selected	for	this	row
from	FCD_COP.1/SK.

KeyDrv7:	Shared	Secret,	Salt,	Output	Length,	Fixed	Information	Method

For	each	supported	selection	of	PRF,	length	of	shared	secret	(Z)	[selection:	128,	256]	bits,	length	of	salt	(S)
[selection:	length	of	input	block	of	PRF,	one-half	length	of	input	block	of	PRF,	0]	bits,	output	length	(L)
[selection:	128,	256]	bits,	and	length	of	fixed	information	(FixedInfo)	[selection:	length	of	on	input	block	of
PRF,	onehalf	length	of	input	block	of	PRF,	0]	bits,	the	evaluator	shall	generate	10	test	vectors	that	include
pseudorandom	input	values	for	Z,	salt	values	(for	non-zero	lengths,	otherwise,	omit)	and	fixed	information	(for
non-zero	lengths,	otherwise,	omit).

For	each	test	vector,	the	evaluator	shall	supply	this	data	to	the	TOE	in	order	to	produce	the	keying	material
output.	The	results	from	each	test	may	either	be	obtained	by	the	evaluator	directly	or	by	supplying	the	inputs
to	the	implementer	and	receiving	the	results	in	response.	To	determine	correctness,	the	evaluator	shall
compare	the	resulting	values	to	those	obtained	by	submitting	the	same	inputs	to	a	known	good
implementation.

KeyDrv8:	Shared	Secret,	Salt,	IV,	Output	Length,	Fixed	Information	Method

For	each	supported	selection	of	PRF,	length	of	shared	secret	(Z),	length	of	salt,	length	of	initialization	vector
(IV),	output	length	(L),	and	length	of	fixed	information	(FixedInfo),	the	evaluator	shall	generate	10	test
vectors	that	include	pseudorandom	input	values	for	Z,	salt	values	(for	non-zero	lengths,	otherwise,	omit),	IV
(for	non-zero	lengths,	otherwise,	use	a	vector	of	length	equal	to	length	of	input	block	of	PRF	and	fill	with
zeros),	and	fixed	information	(for	non-zero	lengths,	otherwise,	omit).

For	each	test	vector,	the	evaluator	shall	supply	this	data	to	the	TOE	in	order	to	produce	the	keying	material
output.	The	results	from	each	test	may	either	be	obtained	by	the	evaluator	directly	or	by	supplying	the	inputs
to	the	implementer	and	receiving	the	results	in	response.	To	determine	correctness,	the	evaluator	shall
compare	the	resulting	values	to	those	obtained	by	submitting	the	same	inputs	to	a	known	good
implementation.

FCS_COP.1/Hash	Cryptographic	Operation	(Hashing)

TSS
The	evaluator	shall	check	that	the	association	of	the	hash	function	with	other	TSF	cryptographic	functions
(for	example,	the	digital	signature	verification	function)	is	documented	in	the	TSS.	The	evaluator	shall	also
check	that	the	TSS	identifies	whether	the	implementation	is	bit-oriented	or	byte-oriented.
Guidance
The	evaluator	checks	the	AGD	documents	to	determine	that	any	configuration	that	is	required	to	configure
the	required	hash	sizes	is	present.	The	evaluator	also	checks	the	AGD	documents	to	confirm	that	the
instructions	for	establishing	the	evaluated	configuration	use	only	those	hash	algorithms	selected	in	the	ST.
KMD
There	are	no	KMD	evaluation	activities	for	this	component.
Tests
The	following	tests	require	the	developer	to	provide	access	to	a	test	platform	that	provides	the	evaluator	with
tools	that	are	typically	not	found	on	factory	products.

SHA-1	and	SHA-2	Tests

The	tests	below	are	derived	from	the	“The	Secure	Hash	Algorithm	Validation	System	(SHAVS),	Updated:	May
21,	2014”	from	the	National	Institute	of	Standards	and	Technology.

The	TSF	hashing	functions	can	be	implemented	with	one	of	two	orientations.	The	first	is	a	byte-oriented
implementation:	this	hashes	messages	that	are	an	integral	number	of	bytes	in	length	(i.e.,	the	length	(in	bits)

of	the	message	to	be	hashed	is	divisible	by	8).	The	second	is	a	bit-oriented	implementation:	this	hashes
messages	of	arbitrary	length.	Separate	tests	for	each	orientation	are	given	below.

The	evaluator	shall	perform	all	of	the	following	tests	for	each	hash	algorithm	and	orientation	implemented	by
the	TSF	and	used	to	satisfy	the	requirements	of	this	PP.	The	evaluator	shall	compare	digest	values	produced
by	a	known-good	SHA	implementation	against	those	generated	by	running	the	same	values	through	the	TSF.

Short	Messages	Test,	Bit-oriented	Implementation

The	evaluators	devise	an	input	set	consisting	of	m+1	messages,	where	m	is	the	block	length	of	the	hash
algorithm	in	bits	(see	SHA	Properties	Table).	The	length	of	the	messages	ranges	sequentially	from	0	to	m	bits.
The	message	text	shall	be	pseudorandomly	generated.	The	evaluators	compute	the	message	digest	for	each	of
the	messages	and	ensure	that	the	correct	result	is	produced	when	the	messages	are	provided	to	the	TSF.

Short	Messages	Test,	Byte-oriented	Implementation

The	evaluators	devise	an	input	set	consisting	of	m/8+1	messages,	where	m	is	the	block	length	of	the	hash
algorithm	in	bits	(see	SHA	Properties	Table).	The	length	of	the	messages	ranges	sequentially	from	0	to	m/8
bytes,	with	each	message	being	an	integral	number	of	bytes.	The	message	text	shall	be	pseudo-randomly
generated.	The	evaluators	compute	the	message	digest	for	each	of	the	messages	and	ensure	that	the	correct
result	is	produced	when	the	messages	are	provided	to	the	TSF.

Selected	Long	Messages	Test,	Bit-oriented	Implementation

The	evaluators	devise	an	input	set	consisting	of	m	messages,	where	m	is	the	block	length	of	the	hash
algorithm	in	bits	(see	SHA	Properties	Table).	The	length	of	the	ith	message	is	m	+	99*i,	where	1	≤	i	≤	m.	The
message	text	shall	be	pseudorandomly	generated.	The	evaluators	compute	the	message	digest	for	each	of	the
messages	and	ensure	that	the	correct	result	is	produced	when	the	messages	are	provided	to	the	TSF.

Selected	Long	Messages	Test,	Byte-oriented	Implementation

The	evaluators	devise	an	input	set	consisting	of	m/8	messages,	where	m	is	the	block	length	of	the	hash
algorithm	in	bits	(see	SHA	Properties	Table).	The	length	of	the	ith	message	is	m	+	8*99*i,	where	1	≤	i	≤	m/8.
The	message	text	shall	be	pseudorandomly	generated.	The	evaluators	compute	the	message	digest	for	each	of
the	messages	and	ensure	that	the	correct	result	is	produced	when	the	messages	are	provided	to	the	TSF.

Pseudo-randomly	Generated	Messages	Test

The	evaluators	randomly	generate	a	seed	that	is	n	bits	long,	where	n	is	the	length	of	the	message	digest
produced	by	the	hash	function	to	be	tested.	The	evaluators	then	formulate	a	set	of	100	messages	and
associated	digests	by	following	the	algorithm	provided	in	Figure	1	of	SHAVS,	section	6.4.	The	evaluators	then
ensure	that	the	correct	result	is	produced	when	the	messages	are	provided	to	the	TSF.

SHA-3	Tests

The	tests	below	are	derived	from	the	The	Secure	Hash	Algorithm-3	Validation	System	(SHA3VS),	Updated:
April	7,	2016,	from	the	National	Institute	of	Standards	and	Technology.

For	each	SHA-3-XXX	implementation,	XXX	represents	d,	the	digest	length	in	bits.	The	capacity,	c,	is	equal	to
2d	bits.	The	rate	is	equal	to	1600-c	bits.

65	The	TSF	hashing	functions	can	be	implemented	with	one	of	two	orientations.	The	first	is	a	bit-oriented
mode	that	hashes	messages	of	arbitrary	length.	The	second	is	a	byte-oriented	mode	that	hashes	messages
that	are	an	integral	number	of	bytes	in	length	(i.e.,	the	length	(in	bits)	of	the	message	to	be	hashed	is	divisible
by	8).	Separate	tests	for	each	orientation	are	given	below.

The	evaluator	shall	perform	all	of	the	following	tests	for	each	hash	algorithm	and	orientation	implemented	by
the	TSF	and	used	to	satisfy	the	requirements	of	this	PP.	The	evaluator	shall	compare	digest	values	produced
by	a	known-good	SHA-3	implementation	against	those	generated	by	running	the	same	values	through	the
TSF.

Short	Messages	Test,	Bit-oriented	Mode

The	evaluators	devise	an	input	set	consisting	of	rate+1	short	messages.	The	length	of	the	messages	ranges
sequentially	from	0	to	rate	bits.	The	message	text	shall	be	pseudo-randomly	generated.	The	evaluators
compute	the	message	digest	for	each	of	the	messages	and	ensure	that	the	correct	result	is	produced	when	the
messages	are	provided	to	the	TSF.	The	message	of	length	0	is	omitted	if	the	TOE	does	not	support	zero-length
messages.

Short	Messages	Test,	Byte-oriented	Mode

The	evaluators	devise	an	input	set	consisting	of	rate/8+1	short	messages.	The	length	of	the	messages	ranges
sequentially	from	0	to	rate/8	bytes,	with	each	message	being	an	integral	number	of	bytes.	The	message	text
shall	be	pseudo-randomly	generated.	The	evaluators	compute	the	message	digest	for	each	of	the	messages
and	ensure	that	the	correct	result	is	produced	when	the	messages	are	provided	to	the	TSF.	The	message	of
length	0	is	omitted	if	the	TOE	does	not	support	zero-length	messages.

Selected	Long	Messages	Test,	Bit-oriented	Mode

The	evaluators	devise	an	input	set	consisting	of	100	long	messages	ranging	in	size	from	rate+(rate+1)	to
rate+(100*(rate+1)),	incrementing	by	rate+1.	(For	example,	SHA-3-256	has	a	rate	of	1088	bits.	Therefore,
100	messages	will	be	generated	with	lengths	2177,	3266,	…,	109988	bits.)	The	message	text	shall	be	pseudo-
randomly	generated.	The	evaluators	compute	the	message	digest	for	each	of	the	messages	and	ensure	that
the	correct	result	is	produced	when	the	messages	are	provided	to	the	TSF.

Selected	Long	Messages	Test,	Byte-oriented	Mode

The	evaluators	devise	an	input	set	consisting	of	100	messages	ranging	in	size	from	(rate+(rate+8))	to
(rate+100*(rate+8)),	incrementing	by	rate+8.	(For	example,	SHA-3-256	has	a	rate	of	1088	bits.	Therefore
100	messages	will	be	generated	of	lengths	2184,	3280,	4376,	…,	110688	bits.)	The	message	text	shall	be
pseudorandomly	generated.	The	evaluators	compute	the	message	digest	for	each	of	the	messages	and	ensure
that	the	correct	result	is	produced	when	the	messages	are	provided	to	the	TSF.

Pseudo-randomly	Generated	Messages	Monte	Carlo)	Test,	Byte-oriented	Mode

The	evaluators	supply	a	seed	of	d	bits	(where	d	is	the	length	of	the	message	digest	produced	by	the	hash
function	to	be	tested.	This	seed	is	used	by	a	pseudorandom	function	to	generate	100,000	message	digests.
One	hundred	of	the	digests	(every	1000th	digest)	are	recorded	as	checkpoints.	The	TOE	then	uses	the	same
procedure	to	generate	the	same	100,000	message	digests	and	100	checkpoint	values.	The	evaluators	then
compare	the	results	generated	ensure	that	the	correct	result	is	produced	when	the	messages	are	generated
by	the	TSF.

FCS_COP.1/HMAC	Cryptographic	Operation	(Keyed	Hash)

TSS
The	evaluator	shall	examine	the	TSS	to	ensure	that	it	specifies	the	following	values	used	by	the	HMAC	and
KMAC	functions:	output	MAC	length	used.
Guidance
There	are	no	guidance	evaluation	activities	for	this	component.
KMD
There	are	no	KMD	evaluation	activities	for	this	component.
Tests
The	following	test	requires	the	developer	to	provide	access	to	a	test	platform	that	provides	the	evaluator	with
tools	that	are	typically	not	found	on	factory	products.

This	test	is	derived	from	The	Keyed-Hash	Message	Authentication	Code	Validation	System	(HMACVS),
updated	6	May	2016.

The	evaluator	shall	provide	15	sets	of	messages	and	keys	for	each	selected	hash	algorithm	and	hash
length/key	size/MAC	size	combination.	The	evaluator	shall	have	the	TSF	generate	HMAC	or	KMAC	tags	for
these	sets	of	test	data.	The	evaluator	shall	verify	that	the	resulting	HMAC	or	KMAC	tags	match	the	results
from	submitting	the	same	inputs	to	a	known-good	implementation	of	the	HMAC	or	KMAC	function,	having	the
same	characteristics.

FCS_COP.1/KAT	Cryptographic	Operation	(Key	Agreement/Transport)

TSS
The	evaluator	shall	ensure	that	the	selected	RSA	and	ECDH	key	agreement/transport	schemes	correspond	to
the	key	generation	schemes	selected	in	FCS_CKM.1/AK,	and	the	key	establishment	schemes	selected	in
FCS_CKM.2	If	the	ST	selects	DH,	the	TSS	shall	describe	how	the	implementation	meets	the	relevant	sections
of	RFC	3526	(Section	3-7)	and	RFC	7919	(Appendices	A.1-A.5).	If	the	ST	selects	ECIES,	the	TSS	shall	describe
the	key	sizes	and	algorithms	(e.g.	elliptic	curve	point	multiplication,	ECDH	with	either	NIST	or	Brainpool
curves,	AES	in	a	mode	permitted	by	FCS_COP.1/SKC,	a	SHA-2	hash	algorithm	permitted	by	FCS_COP.1/Hash,
and	a	MAC	algorithm	permitted	by	FCS_COP.1/HMAC)	that	are	supported	for	the	ECIES	implementation.

The	evaluator	shall	ensure	that,	for	each	key	agreement/transport	scheme,	the	size	of	the	derived	keying
material	is	at	least	the	same	as	the	intended	strength	of	the	key	agreement/transport	scheme,	and	where
feasible	this	should	be	twice	the	intended	security	strength	of	the	key	agreement/transport	scheme.

Table	2	of	NIST	SP	800-57	identifies	the	key	strengths	for	the	different	algorithms	that	can	be	used	for	the
various	key	agreement/transport	schemes.

Guidance
There	are	no	guidance	evaluation	activities	for	this	component.
KMD
There	are	no	KMD	evaluation	activities	for	this	component.
Tests
The	following	tests	require	the	developer	to	provide	access	to	a	test	platform	that	provides	the	evaluator	with
tools	that	are	typically	not	found	on	factory	products.

The	evaluator	shall	verify	the	implementation	of	the	key	generation	routines	of	the	supported	schemes	using
the	following	tests:

If	ECDH-NIST	or	ECDH-BPC	is	claimed:

SP800-56A	Key	Agreement	Schemes

The	evaluator	shall	verify	a	TOE's	implementation	of	SP800-56A	key	agreement	schemes	using	the	following
Function	and	Validity	tests.	These	validation	tests	for	each	key	agreement	scheme	verify	that	a	TOE	has
implemented	the	components	of	the	key	agreement	scheme	according	to	the	specifications	in	the
Recommendation.	These	components	include	the	calculation	of	the	DLC	primitives	(the	shared	secret	value	Z)
and	the	calculation	of	the	derived	keying	material	(DKM)	via	the	Key	Derivation	Function	(KDF).	If	key
confirmation	is	supported,	the	evaluator	shall	also	verify	that	the	components	of	key	confirmation	have	been
implemented	correctly,	using	the	test	procedures	described	below.	This	includes	the	parsing	of	the	DKM,	the
generation	of	MACdata	and	the	calculation	of	MACtag.

Function	Test

The	Function	test	verifies	the	ability	of	the	TOE	to	implement	the	key	agreement	schemes	correctly.	To
conduct	this	test	the	evaluator	shall	generate	or	obtain	test	vectors	from	a	known	good	implementation	of	the
TOE	supported	schemes.	For	each	supported	key	agreement	scheme-key	agreement	role	combination,	KDF
type,	and,	if	supported,	key	confirmation	role-key	confirmation	type	combination,	the	tester	shall	generate	10
sets	of	test	vectors.	The	data	set	consists	of	one	set	of	domain	parameter	values	(FFC)	or	the	NIST	approved
curve	(ECC)	per	10	sets	of	public	keys.	These	keys	are	static,	ephemeral	or	both	depending	on	the	scheme
being	tested.

The	evaluator	shall	obtain	the	DKM,	the	corresponding	TOE’s	public	keys	(static	or	ephemeral),	the	MAC
tags,	and	any	inputs	used	in	the	KDF,	such	as	the	Other	Information	field	OI	and	TOE	id	fields.

If	the	TOE	does	not	use	a	KDF	defined	in	SP	800-56A,	the	evaluator	shall	obtain	only	the	public	keys	and	the
hashed	value	of	the	shared	secret.

The	evaluator	shall	verify	the	correctness	of	the	TSF’s	implementation	of	a	given	scheme	by	using	a	known
good	implementation	to	calculate	the	shared	secret	value,	derive	the	keying	material	DKM,	and	compare
hashes	or	MAC	tags	generated	from	these	values.

If	key	confirmation	is	supported,	the	TSF	shall	perform	the	above	for	each	implemented	approved	MAC
algorithm.

Validity	Test

The	Validity	test	verifies	the	ability	of	the	TOE	to	recognize	another	party’s	valid	and	invalid	key	agreement
results	with	or	without	key	confirmation.	To	conduct	this	test,	the	evaluator	shall	obtain	a	list	of	the
supporting	cryptographic	functions	included	in	the	SP800-56A	key	agreement	implementation	to	determine
which	errors	the	TOE	should	be	able	to	recognize.	The	evaluator	generates	a	set	of	24	(FFC)	or	30	(ECC)	test
vectors	consisting	of	data	sets	including	domain	parameter	values	or	NIST	approved	curves,	the	evaluator’s
public	keys,	the	TOE’s	public/private	key	pairs,	MACTag,	and	any	inputs	used	in	the	KDF,	such	as	the	other
info	and	TOE	id	fields.

The	evaluator	shall	inject	an	error	in	some	of	the	test	vectors	to	test	that	the	TOE	recognizes	invalid	key
agreement	results	caused	by	the	following	fields	being	incorrect:	the	shared	secret	value	Z,	the	DKM,	the
other	information	field	OI,	the	data	to	be	MACed,	or	the	generated	MACTag.	If	the	TOE	contains	the	full	or
partial	(only	ECC)	public	key	validation,	The	evaluator	shall	also	individually	inject	errors	in	both	parties’
static	public	keys,	both	parties’	ephemeral	public	keys	and	the	TOE’s	static	private	key	to	assure	the	TOE
detects	errors	in	the	public	key	validation	function	or	the	partial	key	validation	function	(in	ECC	only).	At	least
two	of	the	test	vectors	shall	remain	unmodified	and	therefore	should	result	in	valid	key	agreement	results
(they	should	pass).

The	TOE	shall	use	these	modified	test	vectors	to	emulate	the	key	agreement	scheme	using	the	corresponding
parameters.	The	evaluator	shall	compare	the	TOE’s	results	with	the	results	using	a	known	good
implementation	verifying	that	the	TOE	detects	these	errors.

If	KAS1,	KAS2,	KTS-OAEP,	or	RSAES-PKCS1-v1_5	is	claimed:

SP800-56B	and	PKCS#1	Key	Establishment	Schemes

If	the	TOE	acts	as	a	sender,	the	following	evaluation	activity	shall	be	performed	to	ensure	the	proper
operation	of	every	TOE	supported	combination	of	RSA-based	key	establishment	scheme:

To	conduct	this	test	the	evaluator	shall	generate	or	obtain	test	vectors	from	a	known	good	implementation	of
the	TOE	supported	schemes.	For	each	combination	of	supported	key	establishment	scheme	and	its	options
(with	or	without	key	confirmation	if	supported,	for	each	supported	key	confirmation	MAC	function	if	key
confirmation	is	supported,	and	for	each	supported	mask	generation	function	if	KTS-OAEP	is	supported),	the
tester	shall	generate	10	sets	of	test	vectors.	Each	test	vector	shall	include	the	RSA	public	key,	the	plaintext
keying	material,	any	additional	input	parameters	if	applicable,	the	MacKey	and	MacTag	if	key	confirmation	is
incorporated,	and	the	outputted	ciphertext.	For	each	test	vector,	the	evaluator	shall	perform	a	key
establishment	encryption	operation	on	the	TOE	with	the	same	inputs	(in	cases	where	key	confirmation	is
incorporated,	the	test	shall	use	the	MacKey	from	the	test	vector	instead	of	the	randomly	generated	MacKey
used	in	normal	operation)	and	ensure	that	the	outputted	ciphertext	is	equivalent	to	the	ciphertext	in	the	test
vector.

If	the	TOE	acts	as	a	receiver,	the	following	evaluation	activities	shall	be	performed	to	ensure	the	proper
operation	of	every	TOE	supported	combination	of	RSA-based	key	establishment	scheme:

To	conduct	this	test	the	evaluator	shall	generate	or	obtain	test	vectors	from	a	known	good	implementation	of
the	TOE	supported	schemes.	For	each	combination	of	supported	key	establishment	scheme	and	its	options
(with	our	without	key	confirmation	if	supported,	for	each	supported	key	confirmation	MAC	function	if	key
confirmation	is	supported,	and	for	each	supported	mask	generation	function	if	KTSOAEP	is	supported),	the
tester	shall	generate	10	sets	of	test	vectors.	Each	test	vector	shall	include	the	RSA	private	key,	the	plaintext
keying	material	(KeyData),	any	additional	input	parameters	if	applicable,	the	MacTag	in	cases	where	key
confirmation	is	incorporated,	and	the	outputted	ciphertext.	For	each	test	vector,	the	evaluator	shall	perform
the	key	establishment	decryption	operation	on	the	TOE	and	ensure	that	the	outputted	plaintext	keying
material	(KeyData)	is	equivalent	to	the	plain	text	keying	material	in	the	test	vector.	In	cases	where	key
confirmation	is	incorporated,	the	evaluator	shall	perform	the	key	confirmation	steps	and	ensure	that	the
outputted	MacTag	is	equivalent	to	the	MacTag	in	the	test	vector.

The	evaluator	shall	ensure	that	the	TSS	describes	how	the	TOE	handles	decryption	errors.	In	accordance	with
NIST	Special	Publication	800-56B,	the	TOE	must	not	reveal	the	particular	error	that	occurred,	either	through
the	contents	of	any	outputted	or	logged	error	message	or	through	timing	variations.	If	KTS-OAEP	is
supported,	the	evaluator	shall	create	separate	contrived	ciphertext	values	that	trigger	each	of	the	three
decryption	error	checks	described	in	NIST	Special	Publication	800-56B	section	7.2.2.3,	ensure	that	each

decryption	attempt	results	in	an	error,	and	ensure	that	any	outputted	or	logged	error	message	is	identical	for
each.

DH:

The	evaluator	shall	verify	the	correctness	of	each	TSF	implementation	of	each	supported	Diffie-Hellman
group	by	comparison	with	a	known	good	implementation.

Curve25519:

The	evaluator	shall	verify	a	TOE's	implementation	of	the	key	agreement	scheme	using	the	following	Function
and	Validity	tests.	These	validation	tests	for	each	key	agreement	scheme	verify	that	a	TOE	has	implemented
the	components	of	the	key	agreement	scheme	according	to	the	specification.	These	components	include	the
calculation	of	the	shared	secret	K	and	the	hash	of	K.

Function	Test

The	Function	test	verifies	the	ability	of	the	TOE	to	implement	the	key	agreement	schemes	correctly.	To
conduct	this	test	the	evaluator	shall	generate	or	obtain	test	vectors	from	a	known	good	implementation	of	the
TOE	supported	schemes.	For	each	supported	key	agreement	role	and	hash	function	combination,	the	tester
shall	generate	10	sets	of	public	keys.	These	keys	are	static,	ephemeral	or	both	depending	on	the	scheme
being	tested.

The	evaluator	shall	obtain	the	shared	secret	value	K,	and	the	hash	of	K.	The	evaluator	shall	verify	the
correctness	of	the	TSF’s	implementation	of	a	given	scheme	by	using	a	known	good	implementation	to
calculate	the	shared	secret	value	K	and	compare	the	hash	generated	from	this	value.

Validity	Test

The	Validity	test	verifies	the	ability	of	the	TOE	to	recognize	another	party’s	valid	and	invalid	key	agreement
results.	To	conduct	this	test,	the	evaluator	generates	a	set	of	30	test	vectors	consisting	of	data	sets	including
the	evaluator’s	public	keys	and	the	TOE’s	public/private	key	pairs.

The	evaluator	shall	inject	an	error	in	some	of	the	test	vectors	to	test	that	the	TOE	recognizes	invalid	key
agreement	results	caused	by	the	following	fields	being	incorrect:	the	shared	secret	value	K	or	the	hash	of	K.
At	least	two	of	the	test	vectors	shall	remain	unmodified	and	therefore	should	result	in	valid	key	agreement
results	(they	should	pass).

The	TOE	shall	use	these	modified	test	vectors	to	emulate	the	key	agreement	scheme	using	the	corresponding
parameters.	The	evaluator	shall	compare	the	TOE’s	results	with	the	results	using	a	known	good
implementation	verifying	that	the	TOE	detects	these	errors.

ECIES:

The	evaluator	shall	verify	the	correctness	of	each	TSF	implementation	of	each	supported	use	of	ECIES	by
comparison	with	a	known	good	implementation.

FCS_COP.1/KeyEnc	Cryptographic	Operation	(Key	Encryption)

TSS
The	evaluator	shall	examine	the	TSS	to	ensure	that	it	identifies	whether	the	implementation	of	this
cryptographic	operation	for	key	encryption	(including	key	lengths	and	modes)	is	an	implementation	that	is
tested	in	FCS_COP.1/SKC.

The	evaluator	shall	check	that	the	TSS	includes	a	description	of	the	key	wrap	functions	and	shall	check	that
this	uses	a	key	wrap	algorithm	and	key	sizes	according	to	the	specification	selected	in	the	ST	out	of	the	table
as	provided	in	the	cPP	table.

Guidance
The	evaluator	checks	the	AGD	documents	to	confirm	that	the	instructions	for	establishing	the	evaluated
configuration	use	only	those	key	wrap	functions	selected	in	the	ST.	If	multiple	key	access	modes	are
supported,	the	evaluator	shall	examine	the	guidance	documentation	to	determine	that	the	method	of	choosing
a	specific	mode/key	size	by	the	end	user	is	described.

KMD
The	evaluator	shall	examine	the	KMD	to	ensure	that	it	describes	when	the	key	wrapping	occurs,	that	the	KMD
description	is	consistent	with	the	description	in	the	TSS,	and	that	for	all	keys	that	are	wrapped	the	TOE	uses
a	method	as	described	in	the	cPP	table.	No	uncertainty	should	be	left	over	which	is	the	wrapping	key	and	the
key	to	be	wrapped	and	where	the	wrapping	key	potentially	comes	from	i.e.	is	derived	from.

If	“AES-GCM”	or	“AES-CCM”	is	used	the	evaluator	shall	examine	the	KMD	to	ensure	that	it	describes	how	the
IV	is	generated	and	that	the	same	IV	is	never	reused	to	encrypt	different	plaintext	pairs	under	the	same	key.
Moreover	in	the	case	of	GCM,	he	must	ensure	that,	at	each	invocation	of	GCM,	the	length	of	the	plaintext	is	at
most	(2^32)-2	blocks.

Tests
Refer	to	FCS_COP.1/SKC	for	the	required	testing	for	each	symmetric	key	wrapping	method	selected	from	the
table	and	to	FCS_COP.1/KAT	for	the	required	testing	for	each	asymmetric	key	wrapping	method	selected
from	the	table.	Each	distinct	implementation	shall	be	tested	separately.

If	the	implementation	of	the	key	encryption	operation	is	the	same	implementation	tested	under
FCS_COP.1/SKC	or	FCS_COP.1/KAT,	and	it	has	been	tested	with	the	same	key	lengths	and	modes,	then	no
further	testing	is	required.	If	key	encryption	uses	a	different	implementation,	(where	“different

implementation”	includes	the	use	of	different	key	lengths	or	modes),	then	the	evaluator	shall	additionally	test
the	key	encryption	implementation	using	the	corresponding	tests	specified	for	FCS_COP.1/SKC	or
FCS_COP.1/KAT.

FCS_COP.1/PBKDF	Cryptographic	Operation	(Password-Based	Key	Derivation	Functions)

TSS
The	evaluator	shall	review	the	TSS	to	verify	that	it	contains	a	description	of	the	PBKDF.	The	evaluator	shall
also	confirm	the	ST	supports	the	selected	hash	function	itself.	The	evaluator	shall	confirm	that	the	TSS
contains	a	description	of	how	the	TOE	ensures	that	the	output	of	the	PBKDF	is	at	least	the	same	length	as
that	specified	in	FCS_CKM.1/SK	and	for	the	KeyDrv4,	KeyDrv5,	or	KeyDrv6	in	FCS_CKM_EXT.5.

If	the	ST	performs	additional	conditioning,	whitening,	or	manipulation	of	the	password	or	passphrase	before
applying	the	PBKDF,	or	to	the	output	of	the	PBKDF,	the	evaluator	shall	ensure	that	the	TSS	describes	the
actions	and	provides	assurance	that	the	TSF	does	not	negatively	impact	the	entropy	of	the	PBKDF	output.

If	any	manipulation	of	the	key	is	performed	in	forming	the	submask	that	will	be	used	to	form	the	KEK,	that
process	shall	be	described	in	the	TSS.
Guidance
There	are	no	AGD	evaluation	activities	for	this	component.
KMD
There	are	no	KMD	evaluation	activities	for	this	component.
Tests
No	explicit	testing	of	the	formation	of	the	submask	from	the	input	password	is	required.

For	the	NIST	SP	800-132-based	conditioning	of	the	passphrase,	the	required	evaluation	activities	will	be
performed	when	doing	the	evaluation	activities	for	the	appropriate	requirements	(FCS_COP.1/HMAC).

The	evaluator	shall	verify	that	the	iteration	count	for	PBKDFs	performed	by	the	TOE	comply	with	NIST	SP
800-132	by	ensuring	that	the	TSS	contains	a	description	of	the	estimated	time	required	to	derive	key	material
from	passwords	and	how	the	TOE	increases	the	computation	time	for	password-based	key	derivation
(including	but	not	limited	to	increasing	the	iteration	count).

FCS_COP.1/SigGen	Cryptographic	Operation	(Signature	Generation)

TSS
The	evaluator	shall	examine	the	TSS	to	ensure	that	all	signature	generation	functions	use	the	approved
algorithms	and	key	sizes.
Guidance
There	are	no	AGD	evaluation	activities	for	this	component.
KMD
There	are	no	KMD	evaluation	activities	for	this	component.
Tests
The	following	tests	require	the	developer	to	provide	access	to	a	test	platform	that	provides	the	evaluator	with
tools	that	are	typically	not	found	on	factory	products.

Each	section	below	contains	tests	the	evaluators	must	perform	for	each	selected	digital	signature	scheme.
Based	on	the	assignments	and	selections	in	the	requirement,	the	evaluators	choose	the	specific	activities	that
correspond	to	those	selections.

The	following	tests	require	the	developer	to	provide	access	to	a	test	platform	that	provides	the	evaluator	with
tools	that	are	not	found	on	the	TOE	in	its	evaluated	configuration.

If	SigGen1:	RSASSA-PKCS1-v1_5or	SigGen4:	RSASSA-PSS	is	claimed:

The	below	test	is	derived	from	The	186-4	RSA	Validation	System	(RSA2VS).	Updated	8	July	2014,	Section	6.3,
from	the	National	Institute	of	Standards	and	Technology.

To	test	the	implementation	of	RSA	signature	generation	the	evaluator	uses	the	system	under	test	to	generate
signatures	for	10	messages	for	each	combination	of	modulus	size	and	SHA	algorithm.	The	evaluator	then	uses
a	known-good	implementation	and	the	associated	public	keys	to	verify	the	signatures.

If	SigGen2:	Digital	Signature	Scheme	2	(DSS2)	or	SigGen3:	Digital	Signature	Scheme	3	(DSS3):

To	test	the	implementation	of	DSS2/3	signature	generation	the	evaluator	uses	the	system	under	test	to
generate	signatures	for	10	messages	for	each	combination	of	SHA	algorithm,	hash	size	and	key	size.	The
evaluator	them	uses	a	known-good	implementation	and	the	associated	public	keys	to	verify	the	signatures.

If	SigGen5:	ECDSA	is	claimed:

The	below	test	is	derived	from	The	FIPS	186-4	Elliptic	Curve	Digital	Signature	Algorithm	Validation	System
(ECDSA2VS).	Updated	18	March	2014,	Section	6.4,	from	the	National	Institute	of	Standards	and	Technology.

To	test	the	implementation	of	ECDSA	signature	generation	the	evaluator	uses	the	system	under	test	to
generate	signatures	for	10	messages	for	each	combination	of	curve,	SHA	algorithm,	hash	size,	and	key	size.
The	evaluator	then	uses	a	known-good	implementation	and	the	associated	public	keys	to	verify	the	signatures.

FCS_COP.1/SigVer	Cryptographic	Operation	(Signature	Verification)

TSS
The	evaluator	shall	check	the	TSS	to	ensure	that	it	describes	the	overall	flow	of	the	signature	verification.
This	should	at	least	include	identification	of	the	format	and	general	location	(e.g.,	"firmware	on	the	hard	drive

device"	rather	than	“memory	location	0x00007A4B")	of	the	data	to	be	used	in	verifying	the	digital	signature;
how	the	data	received	from	the	operational	environment	are	brought	onto	the	device;	and	any	processing	that
is	performed	that	is	not	part	of	the	digital	signature	algorithm	(for	instance,	checking	of	certificate	revocation
lists).
Guidance
There	are	no	AGD	evaluation	activities	for	this	component.
KMD
There	are	no	KMD	evaluation	activities	for	this	component.
Tests
The	following	tests	require	the	developer	to	provide	access	to	a	test	platform	that	provides	the	evaluator	with
tools	that	are	typically	not	found	on	factory	products.

Each	section	below	contains	tests	the	evaluators	must	perform	for	each	selected	digital	signature	scheme.
Based	on	the	assignments	and	selections	in	the	requirement,	the	evaluators	choose	the	specific	activities	that
correspond	to	those	selections.

The	following	tests	require	the	developer	to	provide	access	to	a	test	platform	that	provides	the	evaluator	with
tools	that	are	not	found	on	the	TOE	in	its	evaluated	configuration.

SigVer1:	RSASSA-PKCS1-v1_5	and	SigVer4:	RSASSA-PSS

These	tests	are	derived	from	The	186-4	RSA	Validation	System	(RSA2VS),	updated	8	Jul	2014,	Section	6.4.

The	FIPS	186-4	RSA	Signature	Verification	Test	tests	the	ability	of	the	TSF	to	recognize	valid	and	invalid
signatures.	The	evaluator	shall	provide	a	modulus	and	three	associated	key	pairs	(d,	e)	for	each	combination
of	selected	SHA	algorithm,	modulus	size	and	hash	size.	Each	private	key	d	is	used	to	sign	six	pseudorandom
messages	each	of	1024	bits.	For	five	of	the	six	messages,	the	public	key	(e),	message,	IR	format,	padding,	or
signature	is	altered	so	that	signature	verification	should	fail.	The	test	passes	only	if	all	the	signatures	made
using	unaltered	parameters	result	in	successful	signature	verification,	and	all	the	signatures	made	using
altered	parameters	result	in	unsuccessful	signature	verification.

SigVer5:	ECDSA	on	NIST	and	Brainpool	Curves

These	tests	are	derived	from	The	FIPS	186-4	Elliptic	Curve	Digital	Signature	Algorithm	Validation	System
(ECDSA2VS),	updated	18	Mar	2014,	Section	6.5.

The	FIPS	186-4	ECC	Signature	Verification	Test	tests	the	ability	of	the	TSF	to	recognize	valid	and	invalid
signatures.	The	evaluator	shall	provide	a	modulus	and	associated	key	pair	(x,	y)	for	each	combination	of
selected	curve,	SHA	algorithm,	modulus	size,	and	hash	size.	Each	private	key	(x)	is	used	to	sign	15
pseudorandom	messages	of	1024	bits.	For	eight	of	the	fifteen	messages,	the	message,	IR	format,	padding,	or
signature	is	altered	so	that	signature	verification	should	fail.	The	test	passes	only	if	all	the	signatures	made
using	unaltered	parameters	result	in	successful	signature	verification,	and	all	the	signatures	made	using
altered	parameters	result	in	unsuccessful	signature	verification.

SigVer2:	Digital	Signature	Scheme	2

The	following	or	equivalent	steps	shall	be	taken	to	test	the	TSF.

For	each	supported	modulus	size,	underlying	hash	algorithm,	and	length	of	the	trailer	field	(1-	or	2-byte),	the
evaluator	shall	generate	NT	sets	of	recoverable	message	(M1),	non-recoverable	message	(M2),	salt,	public
key	and	signature	(Σ).

1.	 NT	shall	be	greater	than	or	equal	to	20.
2.	 The	length	of	salts	shall	be	selected	from	its	supported	length	range	of	salt.	The	typical	length	of	salt	is

equal	to	the	output	block	length	of	underlying	hash	algorithm	(see	9.2.2	of	ISO/IEC	9796-2:2010).
3.	 The	length	of	recoverable	messages	should	be	selected	by	considering	modulus	size,	output	block	length

of	underlying	hash	algorithm,	and	length	of	salt	(LS).	As	described	in	Annex	D	of	ISO/IEC	9796-2:2010,	it
is	desirable	to	maximise	the	length	of	recoverable	message.	The	following	table	shows	the	maximum	bit-
length	of	recoverable	message	that	is	divisible	by	512,	for	some	combinations	of	modulus	size,
underlying	hash	algorithm,	and	length	of	salt.	None	that	2-byte	trailer	field	is	assumed	in	calculating	the
maximum	length	of	recoverable	message

Maximum	length	of
recoverable	message
divisible	by	512	(bits)

Modulus
size
(bits)

Underlying
hash
algorithm
(bits)

Length
of	salt
LS
(bits)

1536

2048

SHA-256
128

1024 256

1024

SHA-512

128

1024 256

512 512

2560

3072

SHA-256
128

2048 256

2048

SHA-512

128

2048 256

1536 512

4.	 The	length	of	non-recoverable	messages	should	be	selected	by	considering	the	underlying	hash

algorithm	and	usages.	If	the	TSF	is	used	for	verifying	the	authenticity	of	software/firmware	updates,	the
length	of	non-recoverable	messages	should	be	selected	greater	than	or	equal	to	2048-bit.	With	this
length	range,	it	means	that	the	underlying	hash	algorithm	is	also	tested	for	two	or	more	input	blocks.

5.	 The	evaluator	shall	select	approximately	one	half	of	NT	sets	and	shall	alter	one	of	the	values	(non-
recoverable	message,	public	key	exponent	or	signature)	in	the	sets.	In	altering	public	key	exponent,	the
evaluator	shall	alter	the	public	key	exponent	while	keeping	the	exponent	odd.	In	altering	signatures,	the
following	ways	should	be	considered:
a.	 Altering	a	signature	just	by	replacing	a	bit	in	the	bit-string	representation	of	the	signature
b.	 Altering	a	signature	so	that	the	trailer	in	the	message	representative	cannot	be	interpreted.	This

can	be	achieved	by	following	ways:
Setting	the	rightmost	four	bits	of	the	message	representative	to	the	values	other	than	'1100'.
In	the	case	when	1-byte	trailer	is	used,	setting	the	rightmost	byte	of	the	message
representative	to	the	values	other	than	'0xbc',	while	keeping	the	rightmost	four	bits	to	'1100'.
In	the	case	when	2-byte	trailer	is	used,	setting	the	rightmost	byte	of	the	message
representative	to	the	values	other	than	'0xcc',	while	keeping	the	rightmost	four	bits	to	'1100'.

c.	 In	the	case	when	2-byte	trailer	is	used,	altering	a	signature	so	that	the	hash	algorithm	identifier	in
the	trailer	(i.e.	the	left	most	byte	of	the	trailer)	does	not	correspond	to	hash	algorithms	identified	in
the	SFR.	The	hash	algorithm	identifiers	are	0x34	for	SHA-256	(see	Clause	10	of	ISO/IEC	10118-
3:2018),	and	0x35	for	SHA-512	(see	Clause	11	of	ISO/IEC	10118-3:2018).

d.	 Let	LS	be	the	length	of	salt,	altering	a	signature	so	that	the	intermediate	bit	string	D	in	the	message
representative	is	set	to	all	zeroes	except	for	the	rightmost	LS	bits	of	D.

e.	 (non-conformant	signature	length)	Altering	a	signature	so	that	the	length	of	signature	Σ	is	changed
to	modulus	size	and	the	most	significant	bit	of	signature	Σ	is	set	equal	to	'1'.

f.	 (non-conformant	signature)	Altering	a	signature	so	that	the	integer	converted	from	signature	Σ	is
greater	than	modulus	n.

The	evaluator	shall	supply	the	NT	sets	to	the	TSF	and	obtain	in	response	a	set	of	NT	Verification-Success	or
Verification-Fail	values.	When	the	VerificationSuccess	is	obtained,	the	evaluator	shall	also	obtain	recovered
message	(M	1*).

The	evaluator	shall	verify	that	Verification-Success	results	correspond	to	the	unaltered	sets	and	Verification-
Fail	results	correspond	to	the	altered	sets.

For	each	recovered	message,	the	evaluator	shall	compare	the	recovered	message	(M1*)	with	the
corresponding	recoverable	message	(M	1)	in	the	unaltered	sets.

The	test	passes	only	if	all	the	signatures	made	using	unaltered	sets	result	in	Verification-Success,	each
recovered	message	(M	1*)	is	equal	to	corresponding	M	1	in	the	unaltered	sets,	and	all	the	signatures	made
using	altered	sets	result	in	Verification-Fail.

SigVer3:	Digital	Signature	Scheme	3

The	evaluator	shall	perform	the	test	described	in	SigVer2:	Digital	Signature	Scheme	2	while	using	a	fixed	salt
for	NT	sets.

FCS_COP.1/SKC	Cryptographic	Operation	(Symmetric	Key	Cryptography)

TSS
The	evaluator	shall	check	that	the	TSS	includes	a	description	of	encryption	functions	used	for	symmetric	key
encryption.	The	evaluator	should	check	that	this	description	of	the	selected	encryption	function	includes	the
key	sizes	and	modes	of	operations	as	specified	in	the	cPP	table	9	“Supported	Methods	for	Symmetric	Key
Cryptography	Operation.”

The	evaluator	shall	check	that	the	TSS	describes	the	means	by	which	the	TOE	satisfies	constraints	on
algorithm	parameters	included	in	the	selections	made	for	‘cryptographic	algorithm’	and	‘list	of	standards’.

Guidance
If	the	product	supports	multiple	modes,	the	evaluator	shall	examine	the	vendor’s	documentation	to	determine
that	the	method	of	choosing	a	specific	mode/key	size	by	the	end	user	is	described.
KMD
The	evaluator	shall	examine	the	KMD	to	ensure	that	the	points	at	which	symmetric	key	encryption	and
decryption	occurs	are	described,	and	that	the	complete	data	path	for	symmetric	key	encryption	is	described.
The	evaluator	checks	that	this	description	is	consistent	with	the	relevant	parts	of	the	TSS.

Assessment	of	the	complete	data	path	for	symmetric	key	encryption	includes	confirming	that	the	KMD
describes	the	data	flow	from	the	device’s	host	interface	to	the	device’s	non-volatile	memory	storing	the	data,
and	gives	information	enabling	the	user	data	datapath	to	be	distinguished	from	those	situations	in	which	data
bypasses	the	data	encryption	engine	(e.g.	read-write	operations	to	an	unencrypted	Master	Boot	Record	area).
The	evaluator	shall	ensure	that	the	documentation	of	the	data	path	is	detailed	enough	that	it	thoroughly
describes	the	parts	of	the	TOE	that	the	data	passes	through	(e.g.	different	memory	types,	processors	and	co-
processors),	its	encryption	state	(i.e.	encrypted	or	unencrypted)	in	each	part,	and	any	places	where	the	data	is
stored.	For	example,	any	caching	or	buffering	of	the	data	should	be	identified	and	distinguished	from	the	final
destination	in	non-volatile	memory	(the	latter	represents	the	location	from	which	the	host	will	expect	to
retrieve	the	data	in	future).

If	support	for	AES-CTR	is	claimed	and	the	counter	value	source	is	internal	to	the	TOE,	the	evaluator	shall
verify	that	the	KMD	describes	the	internal	counter	mechanism	used	to	ensure	that	it	provides	unique	counter
block	values.

Tests
The	following	tests	require	the	developer	to	provide	access	to	a	test	platform	that	provides	the	evaluator	with

tools	that	are	typically	not	found	on	factory	products.

The	following	tests	are	conditional	based	upon	the	selections	made	in	the	SFR.	The	evaluator	shall	perform
the	following	test	or	witness	respective	tests	executed	by	the	developer.	The	tests	must	be	executed	on	a
platform	that	is	as	close	as	practically	possible	to	the	operational	platform	(but	which	may	be	instrumented	in
terms	of,	for	example,	use	of	a	debug	mode).	Where	the	test	is	not	carried	out	on	the	TOE	itself,	the	test
platform	shall	be	identified	and	the	differences	between	test	environment	and	TOE	execution	environment
shall	be	described.

Preconditions	for	testing:

Specification	of	keys	as	input	parameter	to	the	function	to	be	tested
specification	of	required	input	parameters	such	as	modes
Specification	of	user	data	(plaintext)
Tapping	of	encrypted	user	data	(ciphertext)	directly	in	the	non-volatile	memory

AES-CBC:
For	the	AES-CBC	tests	described	below,	the	plaintext,	ciphertext,	and	IV	values	shall	consist	of	128-bit	blocks.
To	determine	correctness,	the	evaluator	shall	compare	the	resulting	values	to	those	obtained	by	submitting
the	same	inputs	to	a	known-good	implementation.

These	tests	are	intended	to	be	equivalent	to	those	described	in	NIST’s	AES	Algorithm	Validation	Suite
(AESAVS)	(http://csrc.nist.gov/groups/STM/cavp/documents/aes/AESAVS.pdf).	It	is	not	recommended	that
evaluators	use	values	obtained	from	static	sources	such	as	the	example	NIST’s	AES	Known	Answer	Test
Values	from	the	AESAVS	document,	or	use	values	not	generated	expressly	to	exercise	the	AES-CBC
implementation.

AES-CBC	Known	Answer	Tests

KAT-1	(GFSBox):	To	test	the	encrypt	functionality	of	AES-CBC,	the	evaluator	shall	supply	a	set	of	five
different	plaintext	values	for	each	selected	key	size	and	obtain	the	ciphertext	value	that	results	from	AES-CBC
encryption	of	the	given	plaintext	using	a	key	value	of	all	zeros	and	an	IV	of	all	zeros.

To	test	the	decrypt	functionality	of	AES-CBC,	the	evaluator	shall	supply	a	set	of	five	different	ciphertext
values	for	each	selected	key	size	and	obtain	the	plaintext	value	that	results	from	AES-CBC	decryption	of	the
given	ciphertext	using	a	key	value	of	all	zeros	and	an	IV	of	all	zeros.

KAT-2	(KeySBox):	To	test	the	encrypt	functionality	of	AES-CBC,	the	evaluator	shall	supply	a	set	of	five
different	key	values	for	each	selected	key	size	and	obtain	the	ciphertext	value	that	results	from	AES-CBC
encryption	of	an	all-zeros	plaintext	using	the	given	key	value	and	an	IV	of	all	zeros.

To	test	the	decrypt	functionality	of	AES-CBC,	the	evaluator	shall	supply	a	set	of	five	different	key	values	for
each	selected	key	size	and	obtain	the	plaintext	that	results	from	AES-CBC	decryption	of	an	all-zeros
ciphertext	using	the	given	key	and	an	IV	of	all	zeros.

KAT-3	(Variable	Key):	To	test	the	encrypt	functionality	of	AES-CBC,	the	evaluator	shall	supply	a	set	of	keys	for
each	selected	key	size	(as	described	below)	and	obtain	the	ciphertext	value	that	results	from	AES	encryption
of	an	all-zeros	plaintext	using	each	key	and	an	IV	of	all	zeros.

Key	i	in	each	set	shall	have	the	leftmost	i	bits	set	to	ones	and	the	remaining	bits	to	zeros,	for	values	of	i	from	1
to	the	key	size.	The	keys	and	corresponding	ciphertext	are	listed	in	AESAVS,	Appendix	E.

To	test	the	decrypt	functionality	of	AES-CBC,	the	evaluator	shall	use	the	same	keys	as	above	to	decrypt	the
ciphertext	results	from	above.	Each	decryption	should	result	in	an	all-zeros	plaintext.

KAT-4	(Variable	Text):	To	test	the	encrypt	functionality	of	AES-CBC,	for	each	selected	key	size,	the	evaluator
shall	supply	a	set	of	128-bit	plaintext	values	(as	described	below)	and	obtain	the	ciphertext	values	that	result
from	AES-CBC	encryption	of	each	plaintext	value	using	a	key	of	each	size	and	IV	consisting	of	all	zeros.

Plaintext	value	i	shall	have	the	leftmost	i	bits	set	to	ones	and	the	remaining	bits	set	to	zeros,	for	values	of	i
from	1	to	128.	The	plaintext	values	are	listed	in	AESAVS,	Appendix	D.

To	test	the	decrypt	functionality	of	AES-CBC,	for	each	selected	key	size,	use	the	plaintext	values	from	above
as	ciphertext	input,	and	AES-CBC	decrypt	each	ciphertext	value	using	key	of	each	size	consisting	of	all	zeros
and	an	IV	of	all	zeros.

AES-CBC	Multi-Block	Message	Test

The	evaluator	shall	test	the	encrypt	functionality	by	encrypting	nine	i-block	messages	for	each	selected	key
size,	for	2	≤	i	≤	10.	For	each	test,	the	evaluator	shall	supply	a	key,	an	IV,	and	a	plaintext	message	of	length	i
blocks,	and	encrypt	the	message	using	AES-CBC.	The	resulting	ciphertext	values	shall	be	compared	to	the
results	of	encrypting	the	plaintext	messages	using	a	known	good	implementation.

The	evaluator	shall	test	the	decrypt	functionality	by	decrypting	nine	i-block	messages	for	each	selected	key
size,	for	2	≤	i	≤	10.	For	each	test,	the	evaluator	shall	supply	a	key,	an	IV,	and	a	ciphertext	message	of	length	i
blocks,	and	decrypt	the	message	using	AES-CBC.	The	resulting	plaintext	values	shall	be	compared	to	the
results	of	decrypting	the	ciphertext	messages	using	a	known	good	implementation.

AES-CBC	Monte	Carlo	Tests

The	evaluator	shall	test	the	encrypt	functionality	for	each	selected	key	size	using	100	3-tuples	of	pseudo-
random	values	for	plaintext,	IVs,	and	keys.

The	evaluator	shall	supply	a	single	3-tuple	of	pseudo-random	values	for	each	selected	key	size.	This	3-tuple	of

http://csrc.nist.gov/groups/STM/cavp/documents/aes/AESAVS.pdf

plaintext,	IV,	and	key	is	provided	as	input	to	the	below	algorithm	to	generate	the	remaining	99	3-tuples,	and
to	run	each	3-tuple	through	1000	iterations	of	AES-CBC	encryption.

	 	 	 	 	 	 #	Input:	PT,	IV,	Key
	 	 	 	 	 	 Key[0]	=	Key
	 	 	 	 	 	 IV[0]	=	IV
	 	 	 	 	 	 PT[0]	=	PT
	 	 	 	 	 	 for	i	=	0	to	99	{
	 	 	 	 	 	 	 Output	Key[i],	IV[i],	PT[0]
	 	 	 	 	 	 	 for	j	=	0	to	999	{
	 	 	 	 	 	 	 	 if	(j	==	0)	{
	 	 	 	 	 	 	 	 	 CT[j]	=	AES-CBC-Encrypt(Key[i],	IV[i],	PT[j])
	 	 	 	 	 	 	 	 	 PT[j+1]	=	IV[i]
	 	 	 	 	 	 	 	 }	else	{
	 	 	 	 	 	 	 	 	 CT[j]	=	AES-CBC-Encrypt(Key[i],	PT[j])
	 	 	 	 	 	 	 	 	 PT[j+1]	=	CT[j-1]
	 	 	 	 	 	 	 	 }
	 	 	 	 	 	 	 }
	 	 	 	 	 	 	 Output	CT[j]
	 	 	 	 	 	 	 If	(KeySize	==	128)	Key[i+1]	=	Key[i]	xor	CT[j]	
	 	 	 	 	 	 	 If	(KeySize	==	192)	Key[i+1]	=	Key[i]	xor	(last	64	bits	of	CT[j-1]	||	CT[j])
	 	 	 	 	 	 	 If	(KeySize	==	256)	Key[i+1]	=	Key[i]	xor	((CT[j-1]	|	CT[j])
	 	 	 	 	 	 	 IV[i+1]	=	CT[j]
	 	 	 	 	 	 	 PT[0]	=	CT[j-1]
	 	 	 	 	 	 }
	 	 	 	 	

The	ciphertext	computed	in	the	1000th	iteration	(CT[999])	is	the	result	for	each	of	the	100	3-tuples	for	each
selected	key	size.	This	result	shall	be	compared	to	the	result	of	running	1000	iterations	with	the	same	values
using	a	known	good	implementation.

The	evaluator	shall	test	the	decrypt	functionality	using	the	same	test	as	above,	exchanging	CT	and	PT,	and
replacing	AES-CBC-Encrypt	with	AES-CBC-Decrypt.

AES-CCM:

These	tests	are	intended	to	be	equivalent	to	those	described	in	the	NIST	document,	“The	CCM	Validation
System	(CCMVS),”	updated	9	Jan	2012,	found	at
http://csrc.nist.gov/groups/STM/cavp/documents/mac/CCMVS.pdf.

It	is	not	recommended	that	evaluators	use	values	obtained	from	static	sources	such	as
http://csrc.nist.gov/groups/STM/cavp/documents/mac/ccmtestvectors.zip	or	use	values	not	generated
expressly	to	exercise	the	AES-CCM	implementation.

The	evaluator	shall	test	the	generation-encryption	and	decryption-verification	functionality	of	AES-CCM	for
the	following	input	parameter	and	tag	lengths:

Keys:	All	supported	and	selected	key	sizes	(e.g.,	128,	192,	or	256	bits).
Associated	Data:	Two	or	three	values	for	associated	data	length:	The	minimum	(≥	0	bytes)	and
maximum	(≤	32	bytes)	supported	associated	data	lengths,	and	2^16	(65536)	bytes,	if	supported.
Payload:	Two	values	for	payload	length:	The	minimum	(≥	0	bytes)	and	maximum	(≤	32	bytes)	supported
payload	lengths.
Nonces:	All	supported	nonce	lengths	(e.g.,	8,	9,	10,	11,	12,	13)	in	bytes.
Tag:	All	supported	tag	lengths	(e.g.,	4,	6,	8,	10,	12,	14,	16)	in	bytes.

The	testing	for	CCM	consists	of	five	tests.	To	determine	correctness	in	each	of	the	below	tests,	the	evaluator
shall	compare	the	ciphertext	with	the	result	of	encryption	of	the	same	inputs	with	a	known	good
implementation.

Variable	Associated	Data	Test:	For	each	supported	key	size	and	associated	data	length,	and	any	supported
payload	length,	nonce	length,	and	tag	length,	the	evaluator	shall	supply	one	key	value,	one	nonce	value,	and
10	pairs	of	associated	data	and	payload	values,	and	obtain	the	resulting	ciphertext.

Variable	Payload	Text:	For	each	supported	key	size	and	payload	length,	and	any	supported	associated	data
length,	nonce	length,	and	tag	length,	the	evaluator	shall	supply	one	key	value,	one	nonce	value,	and	10	pairs
of	associated	data	and	payload	values,	and	obtain	the	resulting	ciphertext.

Variable	Nonce	Test:	For	each	supported	key	size	and	nonce	length,	and	any	supported	associated	data
length,	payload	length,	and	tag	length,	the	evaluator	shall	supply	one	key	value,	one	nonce	value,	and	10	pairs
of	associated	data	and	payload	values,	and	obtain	the	resulting	ciphertext.

Variable	Tag	Test:	For	each	supported	key	size	and	tag	length,	and	any	supported	associated	data	length,
payload	length,	and	nonce	length,	the	evaluator	shall	supply	one	key	value,	one	nonce	value,	and	10	pairs	of
associated	data	and	payload	values,	and	obtain	the	resulting	ciphertext.

Decryption-Verification	Process	Test:	To	test	the	decryption-verification	functionality	of	AES-CCM,	for	each
combination	of	supported	associated	data	length,	payload	length,	nonce	length,	and	tag	length,	the	evaluator
shall	supply	a	key	value	and	15	sets	of	input	plus	ciphertext,	and	obtain	the	decrypted	payload.	Ten	of	the	15
input	sets	supplied	should	fail	verification	and	five	should	pass.

AES-GCM:	These	tests	are	intended	to	be	equivalent	to	those	described	in	the	NIST	document,	“The
Galois/Counter	Mode	(GCM)	and	GMAC	Validation	System	(GCMVS)	with	the	Addition	of	XPN	Validation
Testing,”	rev.	15	Jun	2016,	section	6.2,	found	at
http://csrc.nist.gov/groups/STM/cavp/documents/mac/gcmvs.pdf.

http://csrc.nist.gov/groups/STM/cavp/documents/mac/CCMVS.pdf
http://csrc.nist.gov/groups/STM/cavp/documents/mac/gcmvs.pdf

It	is	not	recommended	that	evaluators	use	values	obtained	from	static	sources	such	as
http://csrc.nist.gov/groups/STM/cavp/documents/mac/gcmtestvectors.zip,	or	use	values	not	generated
expressly	to	exercise	the	AES-GCM	implementation.

The	evaluator	shall	test	the	authenticated	encryption	functionality	of	AES-GCM	by	supplying	15	sets	of	Key,
Plaintext,	AAD,	IV,	and	Tag	data	for	every	combination	of	the	following	parameters	as	selected	in	the	ST	and
supported	by	the	implementation	under	test:

Key	size	in	bits:	Each	selected	and	supported	key	size	(e.g.,	128,	192,	or	256	bits).
Plaintext	length	in	bits:	Up	to	four	values	for	plaintext	length:	Two	values	that	are	non-zero	integer
multiples	of	128,	if	supported.	And	two	values	that	are	non-multiples	of	128,	if	supported.
AAD	length	in	bits:	Up	to	five	values	for	AAD	length:	Zero-length,	if	supported.	Two	values	that	are
non-zero	integer	multiples	of	128,	if	supported.	And	two	values	that	are	integer	non-multiples	of	128,	if
supported.
IV	length	in	bits:	Up	to	three	values	for	IV	length:	96	bits.	Minimum	and	maximum	supported	lengths,
if	different.
MAC	length	in	bits:	Each	supported	length	(e.g.,	128,	120,	112,	104,	96).

To	determine	correctness,	the	evaluator	shall	compare	the	resulting	values	to	those	obtained	by	submitting
the	same	inputs	to	a	known-good	implementation.

The	evaluator	shall	test	the	authenticated	decrypt	functionality	of	AES-GCM	by	supplying	15	Ciphertext-Tag
pairs	for	every	combination	of	the	above	parameters,	replacing	Plaintext	length	with	Ciphertext	length.	For
each	parameter	combination	the	evaluator	shall	introduce	an	error	into	either	the	Ciphertext	or	the	Tag	such
that	approximately	half	of	the	cases	are	correct	and	half	the	cases	contain	errors.	To	determine	correctness,
the	evaluator	shall	compare	the	resulting	pass/fail	status	and	Plaintext	values	to	the	results	obtained	by
submitting	the	same	inputs	to	a	known-good	implementation.

AES-CTR:

For	the	AES-CTR	tests	described	below,	the	plaintext	and	ciphertext	values	shall	consist	of	128-bit	blocks.	To
determine	correctness,	the	evaluator	shall	compare	the	resulting	values	to	those	obtained	by	submitting	the
same	inputs	to	a	known-good	implementation.

These	tests	are	intended	to	be	equivalent	to	those	described	in	NIST’s	AES	Algorithm	Validation	Suite
(AESAVS)	(http://csrc.nist.gov/groups/STM/cavp/documents/aes/AESAVS.pdf).	It	is	not	recommended	that
evaluators	use	values	obtained	from	static	sources	such	as	the	example	NIST’s	AES	Known	Answer	Test
Values	from	the	AESAVS	document,	or	use	values	not	generated	expressly	to	exercise	the	AES-CTR
implementation.

AES-CTR	Known	Answer	Tests

KAT-1	(GFSBox):	To	test	the	encrypt	functionality	of	AES-CTR,	the	evaluator	shall	supply	a	set	of	five	different
plaintext	values	for	each	selected	key	size	and	obtain	the	ciphertext	value	that	results	from	AES-CTR
encryption	of	the	given	plaintext	using	a	key	value	of	all	zeros.

To	test	the	decrypt	functionality	of	AES-CTR,	the	evaluator	shall	supply	a	set	of	five	different	ciphertext
values	for	each	selected	key	size	and	obtain	the	plaintext	value	that	results	from	AES-CTR	decryption	of	the
given	ciphertext	using	a	key	value	of	all	zeros.

KAT-2	(KeySBox):	To	test	the	encrypt	functionality	of	AES-CTR,	the	evaluator	shall	supply	a	set	of	five
different	key	values	for	each	selected	key	size	and	obtain	the	ciphertext	value	that	results	from	AES-CTR
encryption	of	an	all-zeros	plaintext	using	the	given	key	value.

To	test	the	decrypt	functionality	of	AES-CTR,	the	evaluator	shall	supply	a	set	of	five	different	key	values	for
each	selected	key	size	and	obtain	the	plaintext	that	results	from	AES-CTR	decryption	of	an	all-zeros
ciphertext	using	the	given	key.

KAT-3	(Variable	Key):	To	test	the	encrypt	functionality	of	AES-CTR,	the	evaluator	shall	supply	a	set	of	keys	for
each	selected	key	size	(as	described	below)	and	obtain	the	ciphertext	value	that	results	from	AES	encryption
of	an	all-zeros	plaintext	using	each	key.

Key	i	in	each	set	shall	have	the	leftmost	i	bits	set	to	ones	and	the	remaining	bits	to	zeros,	for	values	of	i	from	1
to	the	key	size.	The	keys	and	corresponding	ciphertext	are	listed	in	AESAVS,	Appendix	E.

To	test	the	decrypt	functionality	of	AES-CTR,	the	evaluator	shall	use	the	same	keys	as	above	to	decrypt	the
ciphertext	results	from	above.	Each	decryption	should	result	in	an	all-zeros	plaintext.

KAT-4	(Variable	Text):	To	test	the	encrypt	functionality	of	AES-CTR,	for	each	selected	key	size,	the	evaluator
shall	supply	a	set	of	128-bit	plaintext	values	(as	described	below)	and	obtain	the	ciphertext	values	that	result
from	AES-CTR	encryption	of	each	plaintext	value	using	a	key	of	each	size.

Plaintext	value	i	shall	have	the	leftmost	i	bits	set	to	ones	and	the	remaining	bits	set	to	zeros,	for	values	of	i
from	1	to	128.	The	plaintext	values	are	listed	in	AESAVS,	Appendix	D.

To	test	the	decrypt	functionality	of	AES-CTR,	for	each	selected	key	size,	use	the	plaintext	values	from	above
as	ciphertext	input,	and	AES-CTR	decrypt	each	ciphertext	value	using	key	of	each	size	consisting	of	all	zeros.

AES-CTR	Multi-Block	Message	Test

The	evaluator	shall	test	the	encrypt	functionality	by	encrypting	nine	i-block	messages	for	each	selected	key
size,	for	2	≤	i	≤	10.	For	each	test,	the	evaluator	shall	supply	a	key	and	a	plaintext	message	of	length	i	blocks,
and	encrypt	the	message	using	AES-CTR.	The	resulting	ciphertext	values	shall	be	compared	to	the	results	of
encrypting	the	plaintext	messages	using	a	known	good	implementation.

http://csrc.nist.gov/groups/STM/cavp/documents/aes/AESAVS.pdf

The	evaluator	shall	test	the	decrypt	functionality	by	decrypting	nine	i-block	messages	for	each	selected	key
size,	for	2	≤	i	≤	10.	For	each	test,	the	evaluator	shall	supply	a	key	and	a	ciphertext	message	of	length	i
blocks,	and	decrypt	the	message	using	AES-CTR.	The	resulting	plaintext	values	shall	be	compared	to	the
results	of	decrypting	the	ciphertext	messages	using	a	known	good	implementation.

AES-CTR	Monte	Carlo	Tests

The	evaluator	shall	test	the	encrypt	functionality	for	each	selected	key	size	using	100	2-tuples	of	pseudo-
random	values	for	plaintext	and	keys.

The	evaluator	shall	supply	a	single	2-tuple	of	pseudo-random	values	for	each	selected	key	size.	This	2-tuple	of
plaintext	and	key	is	provided	as	input	to	the	below	algorithm	to	generate	the	remaining	99	2-tuples,	and	to
run	each	2-tuple	through	1000	iterations	of	AES-CTR	encryption.

	 	 	 	 	 	 #	Input:	PT,	Key
	 	 	 	 	 	 Key[0]	=	Key
	 	 	 	 	 	 PT[0]	=	PT
	 	 	 	 	 	 for	i	=	0	to	99	{
	 	 	 	 	 	 	 Output	Key[i],	PT[0]
	 	 	 	 	 	 	 for	j	=	0	to	999	{
	 	 	 	 	 	 	 	 CT[j]	=	AES-CTR-Encrypt(Key[i],	PT[j])
	 	 	 	 	 	 	 	 PT[j+1]	=	CT[j]
	 	 	 	 	 	 	 }
	 	 	 	 	 	 	 Output	CT[j]
	 	 	 	 	 	 	 If	(KeySize	==	128)	Key[i+1]	=	Key[i]	xor	CT[j]
	 	 	 	 	 	 	 If	(KeySize	==	192)	Key[i+1]	=	Key[i]	xor	(last	64	bits	of	CT[j-1]	||	CT[j])
	 	 	 	 	 	 	 If	(KeySize	==	256)	Key[i+1]	=	Key[i]	xor	((CT[j-1]	|	CT[j])
	 	 	 	 	 	 	 PT[0]	=	CT[j]
	 	 	 	 	 	 }
	 	 	 	 	

The	ciphertext	computed	in	the	1000th	iteration	(CT[999])	is	the	result	for	each	of	the	100	2-tuples	for	each
selected	key	size.	This	result	shall	be	compared	to	the	result	of	running	1000	iterations	with	the	same	values
using	a	known	good	implementation.

The	evaluator	shall	test	the	decrypt	functionality	using	the	same	test	as	above,	exchanging	CT	and	PT,	and
replacing	AES-CTR-Encrypt	with	AES-CTR-Decrypt.	198	Note	additional	design	considerations	for	this	mode
are	addressed	in	the	KMD	requirements.

XTS-AES:	These	tests	are	intended	to	be	equivalent	to	those	described	in	the	NIST	document,	“The	XTS-AES
Validation	System	(XTSVS),”	updated	5	Sept	2013,	found	at
http://csrc.nist.gov/groups/STM/cavp/documents/aes/XTSVS.pdf

It	is	not	recommended	that	evaluators	use	values	obtained	from	static	sources	such	as	the	XTS-AES	test
vectors	at	http://csrc.nist.gov/groups/STM/cavp/documents/aes/XTSTestVectors.zip	or	use	values	not
generated	expressly	to	exercise	the	XTS-AES	implementation.

The	evaluator	shall	generate	test	values	as	follows:

For	each	supported	key	size	(256	bit	(for	AES-128)	and	512	bit	(for	AES-256)	keys),	the	evaluator	shall
provide	up	to	five	data	lengths:

Two	data	lengths	divisible	by	the	128-bit	block	size,	If	data	unit	lengths	of	complete	block	sizes	are
supported.
Two	data	lengths	not	divisible	by	the	128-bit	block	size,	if	data	unit	lengths	of	partial	block	sizes	are
supported.
The	largest	data	length	supported	by	the	implementation,	or	2^16	(65536),	whichever	is	larger.

The	evaluator	shall	specify	whether	the	implementation	supports	tweak	values	of	128-bit	hexadecimal	strings
or	a	data	unit	sequence	numbers,	or	both.

For	each	combination	of	key	size	and	data	length,	the	evaluator	shall	provide	100	sets	of	input	data	and
obtain	the	ciphertext	that	results	from	XTS-AES	encryption.	If	both	kinds	of	tweak	values	are	supported	then
each	type	of	tweak	value	shall	be	used	in	half	of	every	100	sets	of	input	data,	for	all	combinations	of	key	size
and	data	length.	The	evaluator	shall	verify	that	the	resulting	ciphertext	matches	the	results	from	submitting
the	same	inputs	to	a	known-good	implementation	of	XTS-AES.

The	evaluator	shall	test	the	decrypt	functionality	of	XTS-AES	using	the	same	test	as	for	encrypt,	replacing
plaintext	values	with	ciphertext	values	and	XTS-AES	encrypt	with	XTS-	AES	decrypt.

The	evaluator	shall	check	that	the	full	length	keys	are	created	by	methods	that	ensure	that	the	two	halves	are
different	and	independent.

AES-KWP:

The	tests	below	are	derived	from	“The	Key	Wrap	Validation	System	(KWVS),	Updated:	June	20,	2014”	from
the	National	Institute	of	Standards	and	Technology.

The	evaluator	shall	test	the	authenticated-encryption	functionality	of	AES-KWP	(KWP-AE)	using	the	same	test
as	for	AES-KW	authenticated-encryption	with	the	following	change	in	the	five	plaintext	lengths:

Four	lengths	that	are	multiples	of	8	bits
The	largest	supported	length	less	than	or	equal	to	4096	bits.

The	evaluator	shall	test	the	authenticated-decryption	(KWP-AD)	functionality	of	AES-KWP	using	the	same	test
as	for	AES-KWP	authenticated-encryption,	replacing	plaintext	values	with	ciphertext	values	and	AES-KWP

http://csrc.nist.gov/groups/STM/cavp/documents/aes/XTSVS.pdf

authenticatedencryption	with	AES-KWP	authenticated-decryption.	For	the	Authenticated	Decryption	test,	20
out	of	the	100	trials	per	plaintext	length	have	ciphertext	values	that	fail	authentication.

Additionally,	the	evaluator	shall	perform	the	following	negative	tests:

Test	1:	(invalid	plaintext	length):

Determine	the	valid	plaintext	lengths	of	the	implementation	from	the	TOE	specification.	Verify	that	the
implementation	of	KWP-AE	in	the	TOE	rejects	plaintexts	of	invalid	length	by	testing	plaintext	of	the	following
lengths:	1)	plaintext	with	length	greater	than	64	semi-blocks,	2)	plaintext	with	bit-length	not	divisible	by	8,
and	3)	plaintext	with	length	0.

Test	2:	(invalid	ciphertext	length):	Determine	the	valid	ciphertext	lengths	of	the	implementation	from	the
TOE	specification.	Verify	that	the	implementation	of	KWP-AD	in	the	TOE	rejects	ciphertexts	of	invalid	length
by	testing	ciphertext	of	the	following	lengths:	1)	ciphertext	with	length	greater	than	65	semi-blocks,	2)
ciphertext	with	bit-length	not	divisible	by	64,	3)	ciphertext	with	length	0,	and	4)	ciphertext	with	length	of	one
semi-block.

Test	3:	(invalid	ICV2):	Test	that	the	implementation	detects	invalid	ICV2	values	by	encrypting	any	plaintext
value	four	times	using	a	different	value	for	ICV2	each	time	as	follows:	Start	with	a	base	ICV2	of	0xA65959A6.
For	each	of	the	four	tests	change	a	different	byte	of	ICV2	to	a	different	value,	so	that	each	of	the	four	bytes	is
changed	once.	Verify	that	the	implementation	of	KWP-AD	in	the	TOE	outputs	FAIL	for	each	test.

Test	4:	(invalid	padding	length):	Generate	one	ciphertext	using	algorithm	KWP-AE	with	substring
[len(P)/8]32	of	S	replaced	by	each	of	the	following	32-bit	values,	where	len(P)	is	the	length	of	P	in	bits	and	[
]32	denotes	the	representation	of	an	integer	in	32	bits:

[0]32
[len(P)/8-8]32
[len(P)/8+8]32
[513]32.

Verify	that	the	implementation	of	KWP-AD	in	the	TOE	outputs	FAIL	on	those	inputs.

Test	5:	(invalid	padding	bits):

If	the	implementation	supports	plaintext	of	length	not	a	multiple	of	64-bits,	then

	 	 	 	 	 for	each	PAD	length	[1..7]
	 	 	 	 	 	 for	each	byte	in	PAD	set	a	zero	PAD	value;
	 	 	 	 	 	 	 replace	current	byte	by	a	non-zero	value	and	use	the	resulting	plaintext	as
	 	 	 	 	 	 	 	 input	to	algorithm	KWP-AE	to	generate	ciphertexts;
	 	 	 	 	 	 	 verify	that	the	implementation	of	KWP-AD	in	the	TOE	outputs	FAIL	on
	 	 	 	 	 	 	 	 this	input.
	 	 	 	 	

AES-KW:

The	tests	below	are	derived	from	“The	Key	Wrap	Validation	System	(KWVS),	Updated:	June	20,	2014”	from
the	National	Institute	of	Standards	and	Technology.

The	evaluator	shall	test	the	authenticated-encryption	functionality	of	AES-KW	for	each	combination	of	the
following	input	parameters:

Supported	key	lengths	selected	in	the	ST	(e.g.	128	bits,	256	bits)
Five	plaintext	lengths:

Two	lengths	that	are	non-zero	multiples	of	128	bits	(two	semi-block	lengths)
Two	lengths	that	are	odd	multiples	of	the	semi-block	length	(64	bits)
The	largest	supported	plaintext	length	less	than	or	equal	to	4096	bits.

For	each	set	of	the	above	parameters	the	evaluator	shall	generate	a	set	of	100	key	and	plaintext	pairs	and
obtain	the	ciphertext	that	results	from	AES-KW	authenticated	encryption.	To	determine	correctness,	the
evaluator	shall	compare	the	results	with	those	obtained	from	the	AES-KW	authenticated-encryption	function
of	a	known	good	implementation.

The	evaluator	shall	test	the	authenticated-decryption	functionality	of	AES-KW	using	the	same	test	as	for
authenticated-encryption,	replacing	plaintext	values	with	ciphertext	values	and	AES-KW	authenticated-
encryption	(KW-AE)	with	AES-KW	authenticated-decryption	(KW-AD).	For	the	authenticated-decryption	test,
20	out	of	the	100	trials	per	plaintext	length	must	have	ciphertext	values	that	are	not	authentic;	that	is,	they
fail	authentication.

Additionally,	the	evaluator	shall	perform	the	following	negative	tests:

Test	1	(invalid	plaintext	length):

Determine	the	valid	plaintext	lengths	of	the	implementation	from	the	TOE	specification.	Verify	that	the
implementation	of	KW-AE	in	the	TOE	rejects	plaintexts	of	invalid	length	by	testing	plaintext	of	the	following
lengths:	1)	plaintext	length	greater	than	64	semi-blocks,	2)	plaintext	bit-length	not	divisible	by	64,	3)	plaintext
with	length	0,	and	4)	plaintext	with	one	semi-block.

Test	2	(invalid	ciphertext	length):

Determine	the	valid	ciphertext	lengths	of	the	implementation	from	the	TOE	specification.	Verify	that	the
implementation	of	KW-AD	in	the	TOE	rejects	ciphertexts	of	invalid	length	by	testing	ciphertext	of	the
following	lengths:	1)	ciphertext	with	length	greater	than	65	semi-blocks,	2)	ciphertext	with	bit-length	not

divisible	by	64,	3)	ciphertext	with	length	0,	4)	ciphertext	with	length	of	one	semiblock,	and	5)	ciphertext	with
length	of	two	semi-blocks.

Test	3	(invalid	ICV1):

222	Test	that	the	implementation	detects	invalid	ICV1	values	by	encrypting	any	plaintext	value	eight	times
using	a	different	value	for	ICV1	each	time	as	follows:	Start	with	a	base	ICV1	of	0xA6A6A6A6A6A6A6A6.	For
each	of	the	eight	tests	change	a	different	byte	to	a	different	value,	so	that	each	of	the	eight	bytes	is	changed
once.	Verify	that	the	implementation	of	KW-AD	in	the	TOE	outputs	FAIL	for	each	test.

CAM-CBC:

To	test	the	encrypt	and	decrypt	functionality	of	Camellia	in	CBC	mode,	the	evaluator	shall	perform	the	tests
as	specified	in	10.2.1.2	of	ISO/IEC	18367:2016.

CAM-CCM:

To	test	the	encrypt	functionality	of	Camellia	in	CCM	mode,	the	evaluator	shall	perform	the	tests	as	specified
in	10.6.1.1	of	ISO/IEC	18367:2016.

To	test	the	decrypt	functionality	of	Camellia	in	CCM	mode,	the	evaluator	shall	perform	the	tests	as	specified
in	10.6.1.2	of	ISO/IEC	18367:2016.

As	a	prerequisite	for	these	tests,	the	evaluator	shall	perform	the	test	for	encrypt	functionality	of	Camellia	in
ECB	mode	as	specified	in	10.2.1.2	of	ISO/IEC	18367:2016.

CAM-GCM:

To	test	the	encrypt	functionality	of	Camellia	in	GCM,	the	evaluator	shall	perform	the	tests	as	specified	in
10.6.1.1	of	ISO/IEC	18367:2016.

To	test	the	decrypt	functionality	of	Camellia	in	GCM,	the	evaluator	shall	perform	the	tests	as	specified	in
10.6.1.2	of	ISO/IEC	18367:2016.

As	a	prerequisite	for	these	tests,	the	evaluator	shall	perform	the	test	for	encrypt	functionality	of	Camellia	in
ECB	mode	as	specified	in	10.2.1.2	of	ISO/IEC	18367:2016.

XTS-CAM:

These	tests	are	intended	to	be	equivalent	to	those	described	in	the	IPA	document,	ATR-01-B,	“Specifications
of	Cryptographic	Algorithm	Implementation	Testing	—	Symmetric-Key	Cryptography“,	found	at
https://www.ipa.go.jp/security/jcmvp/jcmvp_e/documents/atr/atr01b_en.pdf.

The	evaluator	shall	generate	test	values	as	follows:

For	each	supported	key	size	(256	bit	(for	Camellia-128)	and	512	bit	(for	Camellia256)	keys),	the	evaluator
shall	provide	up	to	five	data	lengths:

Two	data	lengths	divisible	by	the	128-bit	block	size,	If	data	unit	lengths	of	complete	block	sizes	are
supported.
Two	data	lengths	not	divisible	by	the	128-bit	block	size,	if	data	unit	lengths	of	partial	block	sizes	are
supported.
The	largest	data	length	supported	by	the	implementation,	or	2^16	(65536),	whichever	is	larger.

The	evaluator	shall	specify	whether	the	implementation	supports	tweak	values	of	128-bit	hexadecimal	strings
or	a	data	unit	sequence	numbers,	or	both.

For	each	combination	of	key	size	and	data	length,	the	evaluator	shall	provide	100	sets	of	input	data	and
obtain	the	ciphertext	that	results	from	XTS-Camellia	encryption.	If	both	kinds	of	tweak	values	are	supported,
50	of	each	100	sets	of	input	data	shall	use	each	type	of	tweak	value.	The	resulting	ciphertext	shall	be
compared	to	the	results	of	a	known-good	implementation.

As	a	prerequisite	for	this	test,	the	evaluator	shall	perform	the	test	for	encrypt	functionality	of	Camellia	in	ECB
mode	as	specified	in	10.2.1.2	of	ISO/IEC	18367:2016.

The	evaluator	shall	test	the	decrypt	functionality	of	XTS-Camellia	using	the	same	test	as	for	encrypt,
replacing	plaintext	values	with	ciphertext	values	and	XTSCamellia	encrypt	with	XTS-	Camellia	decrypt.

As	a	prerequisite	for	this	test,	the	evaluator	shall	perform	the	test	for	decrypt	functionality	of	Camellia	in	ECB
mode	as	specified	in	10.2.1.2	of	ISO/IEC	18367:2016.

FCS_RBG_EXT.1	Random	Bit	Generation

TSS
The	evaluator	shall	examine	the	TSS	to	determine	that	it	specifies	the	DRBG	type,	identifies	the	entropy
sources	seeding	the	DRBG,	and	state	the	assumed	or	calculated	min-entropy	supplied	either	separately	by
each	source	or	the	min-entropy	contained	in	the	combined	seed	value.

In	addition	to	the	materials	below,	documentation	shall	be	produced—and	the	evaluator	shall	perform	the
activities—in	accordance	with	Appendix	D	of	[DSCcPP].

Guidance
There	are	no	AGD	evaluation	activities	for	this	component.
KMD

https://www.ipa.go.jp/security/jcmvp/jcmvp_e/documents/atr/atr01b_en.pdf

There	are	no	KMD	evaluation	activities	for	this	component.
Tests
The	following	tests	require	the	developer	to	provide	access	to	a	test	platform	that	provides	the	evaluator	with
tools	that	are	typically	not	found	on	factory	products.

The	evaluator	shall	perform	15	trials	for	the	RNG	implementation.	If	the	RNG	is	configurable,	the	evaluator
shall	perform	15	trials	for	each	configuration.

If	the	RNG	has	prediction	resistance	enabled,	each	trial	consists	of	(1)	instantiate	DRBG,	(2)	generate	the	first
block	of	random	bits	(3)	generate	a	second	block	of	random	bits	(4)	uninstantiate.	The	evaluator	verifies	that
the	second	block	of	random	bits	is	the	expected	value.	The	evaluator	shall	generate	eight	input	values	for
each	trial.	The	first	is	a	count	(0	–	14).	The	next	three	are	entropy	input,	nonce,	and	personalization	string	for
the	instantiate	operation.	The	next	two	are	additional	input	and	entropy	input	for	the	first	call	to	generate.
The	final	two	are	additional	input	and	entropy	input	for	the	second	call	to	generate.	These	values	are
randomly	generated.	“generate	one	block	of	random	bits”	means	to	generate	random	bits	with	number	of
returned	bits	equal	to	the	Output	Block	Length	(as	defined	in	NIST	SP800-90A).

If	the	RNG	does	not	have	prediction	resistance,	each	trial	consists	of	(1)	instantiate	DRBG,	(2)	generate	the
first	block	of	random	bits	(3)	reseed,	(4)	generate	a	second	block	of	random	bits	(5)	uninstantiate.	The
evaluator	verifies	that	the	second	block	of	random	bits	is	the	expected	value.	The	evaluator	shall	generate
eight	input	values	for	each	trial.	The	first	is	a	count	(0	–	14).	The	next	three	are	entropy	input,	nonce,	and
personalization	string	for	the	instantiate	operation.	The	fifth	value	is	additional	input	to	the	first	call	to
generate.	The	sixth	and	seventh	are	additional	input	and	entropy	input	to	the	call	to	reseed.	The	final	value	is
additional	input	to	the	second	generate	call.

The	following	paragraphs	contain	more	information	on	some	of	the	input	values	to	be	generated/selected	by
the	evaluator.

Entropy	input:	the	length	of	the	entropy	input	value	must	equal	the	seed	length.
Nonce:	If	a	nonce	is	supported	(CTR_DRBG	with	no	Derivation	Function	does	not	use	a	nonce),	the
nonce	bit	length	is	one-half	the	seed	length.
Personalization	string:	The	length	of	the	personalization	string	must	be	≤	seed	length.	If	the
implementation	only	supports	one	personalization	string	length,	then	the	same	length	can	be	used	for
both	values.	If	more	than	one	string	length	is	support,	the	evaluator	shall	use	personalization	strings	of
two	different	lengths.	If	the	implementation	does	not	use	a	personalization	string,	no	value	needs	to	be
supplied.
Additional	input:	the	additional	input	bit	lengths	have	the	same	defaults	and	restrictions	as	the
personalization	string	lengths.

FCS_SLT_EXT.1	Cryptographic	Salt	Generation

TSS
The	evaluator	shall	ensure	the	TSS	describes	how	salts	are	generated	using	the	RBG.
Guidance
There	are	no	AGD	evaluation	activities	for	this	component.
KMD
There	are	no	KMD	evaluation	activities	for	this	component.
Tests
The	evaluator	shall	confirm	by	testing	that	the	salts	obtained	in	the	cryptographic	operations	that	use	the
salts	are	of	the	length	specified	in	FCS_SLT_EXT.1,	are	obtained	from	the	RBG,	and	are	fresh	on	each
invocation.

Note:	in	general	these	tests	may	be	carried	out	as	part	of	the	tests	of	the	relevant	cryptographic	operations.

FCS_STG_EXT.1	Protected	Storage

TSS
The	evaluator	shall	review	the	TSS	to	determine	that	the	TOE	implements	the	required	protected	storage.	The
evaluator	shall	ensure	that	the	TSS	contains	a	description	of	the	protected	storage	mechanism	that	justifies
the	selection	of	mutable	hardware-based	or	software-based.

Guidance
The	evaluator	shall	examine	the	operational	guidance	to	ensure	that	it	describes	the	process	for	generating
keys,	importing	keys,	or	both,	based	on	what	is	claimed	by	the	ST.	The	evaluator	shall	also	examine	the
operational	guidance	to	ensure	that	it	describes	the	process	for	destroying	keys	that	have	been	imported	or
generated.

KMD
There	are	no	KMD	evaluation	activities	for	this	component.
Tests
The	evaluator	shall	test	the	functionality	of	each	security	function	as	described	below.	If	the	TOE	supports
both	import	and	generation	of	keys,	the	evaluator	shall	repeat	the	testing	as	needed	to	demonstrate	that	the
keys	resulting	from	both	operations	are	treated	in	the	same	manner.	The	devices	used	with	the	tooling	may
need	to	be	non-production	devices	in	order	to	enable	the	execution	and	gathering	of	evidence.

Test	1:	The	evaluator	shall	import	or	generate	keys/secrets	of	each	supported	type	according	to	the
operational	guidance.	The	evaluator	shall	write,	or	the	developer	shall	provide	access	to,	an	application
that	generates	a	key/secret	of	each	supported	type	and	calls	the	import	functions.	The	evaluator	shall
verify	that	no	errors	occur	during	import.
Test	2:	The	evaluator	shall	write,	or	the	developer	shall	provide	access	to,	an	application	that	uses	a
generated	or	imported	key/secret:

For	RSA,	the	secret	shall	be	used	to	sign	data.
For	ECDSA,	the	secret	shall	be	used	to	sign	data.

The	evaluator	shall	repeat	this	test	with	the	application-imported	or	applicationgenerated	keys/secrets
and	a	different	application’s	imported	keys/secrets	or	generated	keys/secrets.	The	evaluator	shall	verify
that	the	TOE	requires	approval	before	allowing	the	application	to	use	the	key/secret	imported	or
generated	by	the	user	or	by	a	different	application:

The	evaluator	shall	deny	the	approvals	to	verify	that	the	application	is	not	able	to	use	the	key/secret
as	described.
The	evaluator	shall	repeat	the	test,	allowing	the	approvals	to	verify	that	the	application	is	able	to
use	the	key/secret	as	described.

If	the	ST	author	has	selected	common	application	developer,	this	test	is	performed	by	either	using
applications	from	different	developers	or	appropriately	(according	to	API	documentation)	not	authorizing
sharing.

Test	3:	The	evaluator	shall	destroy	keys/secrets	of	each	supported	type	according	to	the	operational
guidance.	The	evaluator	shall	write,	or	the	developer	shall	provide	access	to,	an	application	that	destroys
an	imported	or	generated	key/secret.	The	evaluator	shall	repeat	this	test	with	the	application-imported
or	applicationgenerated	keys/secrets	and	a	different	application’s	imported	or	generated	keys/secrets.
The	evaluator	shall	verify	that	the	TOE	requires	approval	before	allowing	the	application	to	destroy	the
key/secret	imported	by	the	administrator	or	by	a	different	application:

The	evaluator	shall	deny	the	approvals	and	verify	that	the	application	is	still	able	to	use	the
key/secret	as	described.
The	evaluator	shall	repeat	the	test,	allowing	the	approvals	and	verifying	that	the	application	is	no
longer	able	to	use	the	key/secret	as	described.

If	the	ST	author	has	selected	common	application	developer,	this	test	is	performed	by	either	using
applications	from	different	developers	or	appropriately	(according	to	API	documentation)	not	authorizing
sharing.

FCS_STG_EXT.2	Key	Storage	Encryption

TSS
The	evaluator	shall	review	the	TSS	to	determine	that	the	TSS	describes	the	protection	of	symmetric	keys,
KEKs,	long-term	trusted	channel	key	material,	and	software-based	key	storage	as	claimed	in
FCS_STG_EXT.2.1.
Guidance
There	are	no	AGD	evaluation	activities	for	this	component.
KMD
There	are	no	KMD	evaluation	activities	for	this	component
Tests
There	are	no	test	evaluation	activities	for	this	component.

FCS_STG_EXT.3	Key	Integrity	Protection

TSS
The	evaluator	shall	examine	the	TSS	and	ensure	that	it	contains	a	description	of	how	the	TOE	protects	the
integrity	of	its	keys.
Guidance
There	are	no	AGD	evaluation	activities	for	this	component.
KMD
There	are	no	KMD	evaluation	activities	for	this	component.
Tests
There	are	no	test	evaluation	activities	for	this	component.

2.2.2	User	Data	Protection

FDP_ACC.1	Subset	Access	Control

TSS
The	evaluator	shall	confirm	that	the	TSS	contain	the	access	control	policy	implemented	by	the	TOE.	I.e.,	the
ST	author	lists	each	object	and	identifies	for	each	object,	which	operations	the	TSF	permits	for	each	subject
(i.e.	what	can	“admins”	do	vs	“users”).
Guidance
There	are	no	guidance	evaluation	activities	for	this	component.
KMD
There	are	no	KMD	evaluation	activities	for	this	component.
Tests
Testing	for	FDP_ACF	includes	testing	this	component.

FDP_ACF.1	Security	Attribute	Based	Access	Control

TSS
The	evaluator	shall	examine	the	TSS	to	verify	that	it	describes	the	policy	rules	for	the	Access	Control	SFP.
Specifically,	the	evaluator	should	be	able	to	identify,	for	any	arbitrary	subject-object-operation	pairing,	which
of	the	following	is	true:

a.	 The	subject	can	always	perform	the	desired	operation.
b.	 The	subject	can	never	perform	the	desired	operation,	either	because	they	lack	sufficient	permission	or

because	the	TSF	includes	no	interface	to	support	the	operation.
c.	 The	subject	can	only	perform	the	desired	operation	under	certain	conditions	(which	the	evaluator	shall

verify	are	described	in	the	TSS).	For	example,	“the	S.CA	subject	may	only	perform	the	OP.Destroy
operation	on	an	OB.SDO	object	if	it	was	the	subject	that	originally	created	or	imported	the	SDO.”

d.	 The	subject	can	only	perform	the	desired	operation	on	one	or	more	attributes	of	the	object	as	opposed	to
the	entire	object	itself	(which	the	evaluator	shall	verify	are	identified	in	the	TSS).

e.	 Whether	the	subject	can	perform	the	desired	operation	depends	on	TSF	configuration	(which	the
evaluator	shall	verify	is	described	in	the	TSS	as	part	of	the	evaluation	of	FMT_SMF.1).

f.	 Some	combination	of	c,	d,	and	e.

Given	that	this	SFR	requires	a	large	number	of	potential	subject-object-operation	pairings	to	be	identified,	it
is	not	the	expectation	that	the	TSS	contain	an	exhaustive	list	of	these	pairings.	It	is	possible	that	large
numbers	of	pairings	are	addressed	by	blanket	statements	of	policy	rules,	such	as	“the	subjects	S.DSC	and
S.CA	are	never	able	to	perform	any	operation	on	the	OB.AntiReplay	object.”	For	any	rules	that	are	not
addressed	in	this	manner,	the	evaluator	shall	verify	the	TSS	includes	sufficient	data	for	the	evaluator	to
determine	how	the	TSF	will	evaluate	the	action.	This	can	be	presented	in	the	form	of	a	table,	flowchart,	list,
or	other	manner	that	the	ST	author	finds	suitable.

Note	that	the	DSC	developer	may	not	use	the	same	terminology	for	its	subjects,	objects,	and	operations	as	the
PP.	If	this	is	the	case,	the	evaluator	shall	verify	that	the	TSS	includes	a	mapping	that	unambiguously	shows
how	the	vendor’s	preferred	terminology	corresponds	to	what	the	PP	defines.

Guidance
For	any	access	control	policy	enforcement	behavior	that	is	configurable,	the	evaluator	shall	ensure	that	the
operational	guidance	describes	how	to	perform	the	configuration,	including	any	restrictions	on	permissible
configurable	settings.
KMD
There	are	no	KMD	evaluation	activities	for	this	component.
Tests
The	following	testing	may	require	the	TOE	developer	to	make	a	test	harness	available	to	the	evaluator	that
allows	the	evaluator	to	interface	directly	with	the	DSC.	Due	to	the	large	volume	of	potential	testing	that	this
requires,	this	test	may	require	the	use	of	an	automated	script.	If	a	test	script	is	made	available,	the	evaluator
shall	verify	that	it	includes	sufficient	detail	to	validate	the	claims	made	in	the	TSS.

For	each	subject/object/operation/attribute	combination,	the	evaluator	shall	attempt	to	perform	the	operation
or	determine	that	no	interface	is	present	to	attempt	the	operation,	consistent	with	the	limitations	described	in
the	TSS.

For	each	case	where	an	operation	is	always	permitted	or	never	permitted,	both	positive	and	negative	testing
will	be	conducted	implicitly	by	attempting	the	operation	with	all	possible	subjects	and	determining	that	the
intended	results	occur	in	each	case.

For	each	case	where	the	operation	succeeds	or	fails	based	on	the	target	object	attribute,	the	evaluator	shall
ensure	that	both	positive	and	negative	testing	is	performed	such	that	only	the	correct	target	attributes	can	be
operated	upon.

For	each	case	where	the	operation	succeeds	or	fails	based	on	one	or	more	specific	conditions,	the	evaluator
shall	ensure	that	both	positive	and	negative	testing	is	performed	such	that	the	presence	of	the	conditions
causes	the	test	to	succeed	while	the	absence	of	the	conditions	causes	the	test	to	fail.

For	each	case	where	the	operation	succeeds	or	fails	based	on	an	administratively	configured	setting,	the
evaluator	shall	ensure	that	both	positive	and	negative	testing	is	performed	such	that	the	configuration	setting
can	be	shown	to	affect	whether	or	not	the	operation	succeeds.

FDP_ETC_EXT.2	Propagation	of	SDOs

TSS
The	evaluator	shall	examine	the	TSS	to	ensure	that	it	describes	how	it	protects	the	SDO	references,
authorization	data,	against	access	from	unauthorized	entities.	If	the	TSF	is	selected,	then	it	should	describe
how	it	provides	confidentiality	of	the	data	while	it	resides	outside	the	TOE.
Guidance
There	are	no	guidance	evaluation	activities	for	this	component.
KMD
There	are	no	KMD	evaluation	activities	for	this	component.
Tests
There	are	no	test	evaluation	activities	for	this	component.

FDP_FRS_EXT.1	Factory	Reset

TSS
The	evaluator	shall	examine	the	TSS	to	determine	that	it	describes	each	of	the	conditions	which	will	lead	to	a
factory	reset.
Guidance
The	evaluator	shall	examine	the	operational	guidance	to	ensure	that	it	describes	the	ways	the	administrator
can	set	the	conditions	to	initiate	a	factory	reset.
KMD
There	are	no	KMD	evaluation	activities	for	this	component.
Tests
The	evaluator	shall	identify	all	functions	that	resets	the	DSC	to	factory	setting.	For	each	function,	the
evaluator	shall	identify	all	methods	for	authorizing	the	factory	reset.	For	each	function	and	for	each
authorization	method,	the	evaluator	shall	create	an	SDE	or	SDO.	The	evaluator	shall	then	verify	the	presence
of	the	item	just	created.	The	evaluator	shall	initiate	a	factory	reset	using	the	selected	function	and
authorization	method	and	verify	the	item	no	longer	exists.

FDP_ITC_EXT.1	Parsing	of	SDEs

TSS
The	evaluator	shall	confirm	the	TSS	contains	descriptions	of	the	supported	methods	the	TSF	uses	to	import
SDEs	into	the	TOE.	For	each	import	method	selected,	the	TSS	shall	describe	integrity	verification	schemes
employed.	The	TSS	shall	also	list	the	ways	the	TSF	generates	and	binds	security	attributes	to	the	SDEs.
Guidance
There	are	no	AGD	evaluation	activities	for	this	component.
KMD
There	are	no	KMD	evaluation	activities	for	this	component.
Tests
For	each	supported	import	method	selected	in	FDP_ITC_EXT.1.1	and	for	each	supported	integrity	verification
method	selected	in	FDP_ITC_EXT.1.2.	used	by	the	selected	import	method,	provide	one	SDE	with	valid
integrity	credentials,	one	with	invalid	integrity	credentials	(e.g.	hash).	The	operations	with	invalid	integrity
credentials	must	result	in	error.	The	operations	with	valid	integrity	credentials	must	return	an	SDO	with	valid
security	attributes	in	accordance	with	FDP_ITC_EXT.1.4.

FDP_ITC_EXT.2	Parsing	of	SDOs

TSS
The	evaluator	shall	confirm	the	TSS	contains	descriptions	of	the	supported	methods	the	TSF	uses	to	import
SDOs	into	the	TOE.	For	each	import	method	selected,	the	TSS	shall	describe	integrity	verification	schemes
employed.	The	TSS	shall	also	list	the	ways	the	TSF	generates	and	binds	security	attributes	to	the	SDOs.
Guidance
There	are	no	AGD	evaluation	activities	for	this	component.
KMD
There	are	no	KMD	evaluation	activities	for	this	component.
Tests
For	each	supported	import	method	selected	in	FDP_ITC_EXT.2.1	and	for	each	supported	integrity	verification
method	selected	in	FDP_ITC_EXT.2.2	used	by	the	selected	import	method,	provide	one	SDO	with	valid
integrity	credentials,	one	with	invalid	integrity	credentials	(e.g.	hash).	The	operations	with	invalid	integrity
credentials	must	result	in	error.	The	operations	with	valid	integrity	credentials	must	return	an	SDO	with	valid
security	attributes	in	accordance	with	FDP_ITC_EXT.2.3,	FDP_ITC_EXT.2.4,	and	FDP_ITC_EXT.2.5.

FDP_MFW_EXT.1	Mutable/Immutable	Firmware

TSS
The	evaluator	shall	examine	the	TSS	and	ensure	that	details	of	which	firmware	components	are	considered
mutable	and	which	firmware	components	are	considered	immutable,	as	well	as	how	these	firmware
components	can/cannot	be	modified	or	altered,	are	described.	For	example,	DSC	firmware	components	that
are	stored	in	ROM	would	be	considered	immutable.
Guidance
If	the	TOE	has	mutable	firmware,	the	evaluator	shall	examine	the	operational	guidance	to	ensure	that	it
describes	how	to	modify	the	firmware.
KMD
There	are	no	KMD	evaluation	activities	for	this	component.
Tests
If	the	TOE	has	mutable	firmware,	the	evaluator	shall	perform	the	activities	described	in	the	operational
guidance	to	modify	the	firmware.

FDP_RIP.1	Subset	Residual	Information	Protection

TSS
The	evaluator	shall	check	to	ensure	that	the	TSS	describes	resource	deallocation	to	the	extent	that	they	can
determine	that	no	data	will	be	reused	when	reallocating	resources	following	the	destruction	of	an	SDE	or
SDO.	The	evaluator	shall	ensure	that	this	description	at	a	minimum	describes	how	the	previous	data	is
destroyed.	The	evaluator	shall	also	ensure	that	this	destruction	method	is	consistent	with	FCS_CKM.4.
Guidance
There	are	no	AGD	evaluation	activities	for	this	component.
KMD
There	are	no	KMD	evaluation	activities	for	this	component.
Tests
Testing	for	FCS_CKM.4	is	sufficient	to	address	this	component.

FDP_SDC_EXT.1	Confidentiality	of	SDEs

TSS
The	evaluator	shall	examine	the	TSS	to	determine	that	it	describes	the	protection	for	SDEs	and	authorization
data	and	the	methods	of	protection	(e.g.	protected	storage,	symmetric	encryption,	key	wrapping,	etc.).

The	evaluator	shall	also	examine	the	TSS	to	determine	whether	the	TSF	stores	this	data	inside	the	TOE
boundary	or	in	its	operational	environment.	If	the	TSF	stores	this	data	inside	the	TOE	boundary,	the	evaluator
shall	ensure	that	TSF	uses	one	of	the	listed	methods	to	provide	confidentiality.	If	the	data	is	stored	in	the
TOE’s	operational	environment,	the	evaluator	shall	ensure	that	the	TSF	uses	key	wrapping	to	provide
confidentiality.

The	evaluator	shall	examine	the	TSS	to	confirm	is	sufficiently	describes	each	method	used	to	provide
confidentiality	for	SDEs.	The	evaluator	shall	also	confirm	that	the	TOE	supports	all	encryption	methods
selected.

Guidance
There	are	no	AGD	evaluation	activities	for	this	component.
KMD
There	are	no	KMD	evaluation	activities	for	this	component.
Tests
If	the	TOE	stores	SDEs	and	authorization	data	inside	the	TSF,	the	evaluator	shall	ensure	that	external
interfaces	cannot	extract	this	data	in	plaintext.

In	this	case,	use	the	evaluation	activities	of	the	FPT_PHP.3	if	protected	storage	is	selected,	FCS_COP.1/SK	if
symmetric	encryption	using…	is	selected,	and	FCS_COP.1/KAT	if	key	wrapping	using…	is	selected.

If	the	TOE	stores	authentication	data	inside	the	operational	environment,	the	evaluator	shall	ensure	that
plaintext	data	is	not	visible	on	the	interface	between	the	TOE	and	the	operational	environment.

FDP_SDI.2	Stored	Data	Integrity	Monitoring	and	Action

TSS
The	evaluator	shall	confirm	that	the	ST	author	describes	the	methods	for	protecting	the	integrity	of	SDOs
stored	with	the	TOE,	and	shall	identify	the	iteration	of	FCS_COP.1/Hash	or	FCS_COP.1/HMAC	that	covers	any
cryptographic	algorithm	used.	The	evaluator	shall	also	confirm	that	the	TSS	describes	the	response	upon	the
detection	of	an	integrity	error.

The	evaluator	shall	confirm	that	the	TSS	describes	the	actions	the	TSF	takes	when	the	integrity	verification
fails	for	an	SDO,	including	the	circumstances	that	cause	a	notification	to	be	sent	when	this	occurs.

The	evaluator	shall	confirm	that	TSS	describes	how	integrity	of	SDOs	is	protected	in	FMT_MSA.3	during
initialization,	and	how	the	integrity	of	SDOs	are	verified	during	parsing	(import)	in	FDP_ITC_EXT.
Guidance
The	evaluator	shall	examine	the	operational	guidance	to	verify	that	it	describes	the	conditions	that	cause	a
notification	to	be	sent	when	an	integrity	error	is	detected,	and	what	the	contents	of	the	notification	are.
KMD
There	are	no	KMD	evaluation	activities	for	this	component.
Tests
The	tests	for	FDP_ITC_EXT	and	FMT_MSA.3	shall	suffice	for	this	component.

2.2.3	Identification	and	Authentication

FIA_AFL_EXT.1	Authorization	Failure	Handling

TSS
The	evaluator	shall	examine	the	TSS	to	determine	that	it	contains	a	description	for	how	successive
unsuccessful	authorization	attempts	are	detected	and	tracked.	The	evaluator	shall	examine	the	TSS	to
determine	that	is	contains	a	description	of	the	actions	in	the	event	that	the	authorization	attempt	threshold	is
met	or	exceeded.

The	evaluator	shall	also	examine	the	TSS	to	determine	that	it	describes	how	the	failed	authorization	attempt
counter	is	incremented	before	the	authorization	is	verified.

The	evaluator	shall	also	examine	the	TSS	to	determine	the	behaviour	that	will	occur	if	there	are	excessive
failed	authorization	attempts,	specifically	whether	future	attempts	are	prevented	for	a	static	or	configurable
amount	of	time,	future	attempts	are	prevented	indefinitely,	or	a	factory	reset	is	triggered.
Guidance
The	evaluator	shall	examine	the	guidance	documentation	to	ensure	that	instructions	for	configuring	the
number	of	successive	unsuccessful	authentication	attempts	and	time	period	(if	implemented)	are	provided,
and	that	the	process	of	unlocking	the	SDOs	is	described	for	each	“action”	specified	(if	that	option	is	chosen).

The	evaluator	shall	examine	the	guidance	documentation	to	confirm	that	it	describes,	and	identifies	the
importance	of,	any	actions	that	are	required	in	order	to	ensure	that	access	to	SDOs	can	be	maintained,	unless
it	is	made	permanently	unavailable	due	to	a	factory	reset.
KMD
There	are	no	KMD	evaluation	activities	for	this	component.
Tests
The	evaluator	shall	perform	the	following	tests	for	each	method	by	which	the	TSF	authorizes	access	the	SDOs
(e.g.	any	passwords	entered	as	part	of	establishing	authorization):

Test	1:	The	evaluator	shall	use	the	operational	guidance	to	configure	the	number	of	successive
unsuccessful	authorization	attempts	allowed	by	the	TOE	(and,	if	the	time	period	selection	in
FIA_AFL_EXT.1.3	is	included	in	the	ST,	then	the	evaluator	shall	also	use	the	operational	guidance	to
configure	the	time	period	after	which	access	is	re-enabled).	The	evaluator	shall	test	that	once	the
authorization	attempts	limit	is	reached,	authorization	attempts	with	valid	credentials	are	no	longer
successful.
Test	2:	After	reaching	the	limit	for	unsuccessful	authorization	attempts	as	in	Test	1	above,	the	evaluator
shall	proceed	as	follows.	If	the	action	selected	in	FIA_AFL_EXT.1.3	is	included	in	the	ST	then	the
evaluator	shall	confirm	by	testing	that	following	the	operational	guidance	and	performing	each	action
specified	in	the	ST	to	re-enable	access	results	in	successful	access.	If	the	time	period	selection	in
FIA_AFL_EXT.1.3	is	included	in	the	ST,	then	the	evaluator	shall	wait	for	just	less	than	the	time	period
configured	in	Test	1	and	show	that	an	authorization	attempt	using	valid	credentials	does	not	result	in
successful	access.	The	evaluator	shall	then	wait	until	just	after	the	time	period	configured	in	Test	1	and
show	that	an	authorization	attempt	using	valid	credentials	results	in	successful	access.
Test	3:	[conditional]:	If	factory	reset	the	TOE	wiping	out	all	non-persistent	SDOs,	as	described	by
FDP_FRS_EXT.2	is	selected	in	FIA_AFL_EXT.1.3,	the	evaluator	shall	perform	the	test	required	by

FDP_FRS_EXT.2	with	step	5	replaced	with	“The	evaluator	shall	initiate	a	factory	reset	by	deliberately
meeting	or	surpassing	the	threshold	for	unsuccessful	authorization	attempts,	depending	on	whether
meets	or	surpasses	is	selected	in	FIA_AFL_EXT.1.3.”

FIA_SOS.2	TSF	Generation	of	Secrets

TSS
The	evaluator	shall	ensure	that	the	TSS	describes	for	each	of	the	TSF	functions	listed	in	FIA_SOS.2.2,	if	the
available	key	space	is	configurable,	and	the	size	(or	range)	of	the	key	space	employed	to	generate
authorization	values.

The	evaluator	shall	ensure	that	the	TSS	states	that	the	quality	metrics	provided	is	based	on	the	assumption	of
sufficient	entropy	being	provided	in	accordance	with	the	information	given	in	[DSCcPP]	Annex	D.

The	evaluator	shall	ensure	that	the	TSS	describes	the	restrictions	implemented	in	order	to	restrict
consecutive	authentication	attempts.	(Authentication	throttling)

The	evaluator	shall	ensure	that	the	TSS	describes	the	mechanism	used	to	generate	authorization	values	and
documents	the	quality	metric	that	the	mechanism	provides.	The	information	provided	in	the	TSS	shall
demonstrate	that:

a.	 The	probability	that	a	random	single	authentication	attempt	will	be	successful	is	less	than	one	in
1,000,000;	and

b.	 The	probability	that	random	multiple	authentication	attempts	during	a	one	(1)	minute	period	will	be
successful	is	less	than	one	in	100,000.

Guidance
The	evaluator	shall	examine	the	guidance	documentation	to	determine	that	it	describes	any	configuration
necessary	to	enforce	the	use	of	TSF	generated	authorization	values	listed	in	FIA_SOS.2.2.

The	evaluator	shall	ensure	that	the	guidance	documentation	provides	any	instructions	needed	to	set
parameters	affecting	the	available	key	spaces.
KMD
There	are	no	KMD	evaluation	activities	for	this	component.
Tests
The	evaluator	shall	perform	the	following	tests.

Test	1:	The	evaluator	shall	compose	a	set	of	50	authorization	values	that	meet	the	requirements,	and	50
authorization	values	that	fail	to	meet	the	requirements.
a.	 For	each	authentication	value	that	meets	the	requirements,	the	evaluator	shall	verify	that	the	TOE

supports	the	authentication	value.
b.	 For	each	authentication	value	that	does	not	meet	the	requirements,	the	evaluator	shall	verify	that

the	TOE	does	not	support	the	authentication	value.
While	the	evaluator	is	not	required	(nor	is	it	feasible)	to	test	all	possible	compositions	of	authentication
values,	the	evaluator	shall	ensure	that	the	key	space	identified	in	the	TSS	is	valid.
Test	2:	For	each	TSF	function	listed	in	FIA_SOS.2.2	the	TOE	shall	be	configured	to	generate	the
authentication	values;	the	evaluator	shall	check	that	the	TOE	produces	the	authentication	values.

FIA_UAU.2	User	Authentication	before	Any	Action

TSS
The	evaluator	shall	examine	the	TSS	to	determine	that	it	describes	the	identification	and	authentication
process	for	each	supported	method	(PIN/try-PIN,	salted	hash,	etc.),	the	circumstances	in	which	each
supported	method	is	used,	and	constitutes	“successful	authentication.”

The	evaluator	shall	examine	the	TSS	to	determine	that	it	describes	which	actions	are	allowed	before	user
identification	and	authentication.	The	evaluator	shall	also	determine	that	the	TSS	describes,	for	each	action
that	does	require	identification	and	authentication,	the	method	and	circumstances	by	which	the
authentication	is	performed	(e.g.,	as	per	the	application	note,	the	TSF	may	authenticate	a	user	once	rather
than	each	time	access	to	an	SDO	is	attempted;	the	TSS	shall	describe	when	authentication	is	or	is	not
required	in	order	to	perform	a	TSF-mediated	action).
Guidance
The	evaluator	shall	examine	the	guidance	documentation	to	determine	that	any	necessary	preparatory	steps
(e.g.,	establishing	valid	credential	material	such	as	PIN)	to	logging	in	are	described.	For	each	supported	the
login	method,	the	evaluator	shall	ensure	the	guidance	documentation	provides	clear	instructions	for
successfully	logging	on.
KMD
There	are	no	KMD	evaluation	activities	for	this	component.
Tests
The	evaluator	shall	use	the	guidance	documentation	to	configure	the	appropriate	credentials	supported	for
each	authentication	method.	For	that	authentication	method,	the	evaluator	shall	attempt	to	perform	TSF-
mediated	actions	that	require	successful	use	of	that	authentication	method	and	subsequently	show	that
providing	correct	I&A	information	results	in	the	ability	to	perform	the	requested	action,	while	providing
incorrect	information	results	in	denial	of	access.

FIA_UAU.5	Multiple	Authentication	Mechanisms

TSS
The	evaluator	shall	examine	the	TSS	and	ensure	that	it	describes	the	authentication	mechanisms	used	to
support	user	authentication	for	the	Prove	service	as	well	as	how	each	authentication	mechanism	provides
authentication	for	the	Prove	service.

Guidance
If	the	supported	authentication	mechanisms	are	configurable,	the	evaluator	shall	examine	the	operational
guidance	to	verify	that	it	describes	how	to	configure	the	authentication	mechanisms	used	to	provide
authentication	for	the	Prove	service.
KMD
There	are	no	KMD	evaluation	activities	for	this	component.
Tests
For	each	supported	authentication	mechanism,	the	evaluator	shall	verify	that	valid	credentials	result	in
successful	authentication	and	invalid	credentials	result	in	a	rejected	authentication	attempt.	If	the	supported
authentication	mechanisms	are	configurable,	the	evaluator	shall	follow	the	operational	guidance	to
enable/disable	the	various	mechanisms	and	ensure	that	valid	credentials	do	not	result	in	successful
authentication	if	that	mechanism	is	disabled,	or	that	there	is	no	interface	to	provide	authentication
credentials	over	an	external	interface	when	that	mechanism	is	disabled.

FIA-UAU.6	Re-Authenticating

TSS
The	evaluator	shall	examine	the	TSS	to	determine	that	it	describes	each	of	the	options	for	reauthorization.
Guidance
There	are	no	AGD	evaluation	activities	for	this	component.
KMD
There	are	no	KMD	evaluation	activities	for	this	component.
Tests
The	evaluator	shall	use	the	configuration	guidance	to	create	an	SDO	with	each	of	the	options	for
reauthorization,	then	identify	functions	to	exercise	each	of	these	options,	then	execute	these	options
providing	the	correct	authorization	confirming	that	the	operation	succeeded	with	respect	to	the
reauthorization	option	chosen.	The	evaluator	shall	then	attempt	to	execute	these	functions	while	providing
the	incorrect	authorization	and	confirming	that	the	operation	fails.

2.2.4	Security	Management	(FMT)

FMT_MOF_EXT.1	Management	of	Security	Functions	Behavior

TSS
The	evaluator	shall	verify	that	the	TSS	describes	those	management	functions	that	may	be	performed	by	the
Administrator,	to	include	how	the	client	applications	are	prevented	from	accessing,	performing,	or	relaxing
the	function	(if	applicable),	and	how	they	are	prevented	from	modifying	the	Administrator	configuration.	The
TSS	also	describes	any	functionality	that	is	affected	by	administrator-configured	policy	and	how.	This	activity
will	be	performed	in	conjunction	with	FMT_SMF_EXT.1.
Guidance
There	are	no	AGD	evaluation	activities	for	this	component.
KMD
There	are	no	KMD	evaluation	activities	for	this	component.
Tests
For	each	management	function	described	in	FMT_SMF_EXT.1.1,	the	evaluator	shall	perform	the	function	with
administrator	authorization	data	and	confirm	it	succeeds,	and	again	with	client	application	authorization	data
and	confirm	that	it	fails.

FMT_MSA.1	Management	of	Security	Attributes

TSS
The	evaluator	shall	confirm	that	the	TSS	describes	the	modification	constraints	for	each	SDO	security
attribute.
Guidance
There	are	no	AGD	evaluation	activities	for	this	component.
KMD
There	are	no	KMD	evaluation	activities	for	this	component.
Tests
The	evaluator	shall	confirm	that	the	evaluation	activities	for	FDP_ACF.1	contains	tests	for	the	OP.Modify
operation	on	objects	OB.P_SDO,	OB.T_SDO.

FMT_MSA.3	Static	Attribute	Initialization

TSS
The	evaluator	shall	confirm	that	the	TSS	describes	the	initialization	process	for	importing	and	generating
SDOs.	The	TSS	shall	describe	each	type	of	SDO.Type	and	any	additional	attributes	that	are	beyond	the	ones
listed.	Additionally,	list	any	further	restrictions	of	the	allowed	values	for	the	minimum	list	of	attributes.

The	evaluator	shall	confirm	that	the	TSS	describes	the	allowed	values	for	each	of	the	attributes.
Guidance
There	are	no	AGD	evaluation	activities	for	this	component.
KMD
There	are	no	KMD	evaluation	activities	for	this	component.
Tests
The	evaluator	shall	confirm	that	the	evaluation	activities	for	FDP_ACF.1	contains	tests	for	the	OP.Import	and
OP.Create	operations	on	objects	OB.P_SDO,	OB.T_SDO.

FMT_SMF.1	Specification	of	Management	Functions

TSS
The	evaluator	shall	verify	that	the	TSS	describes	all	management	functions.
Guidance
The	evaluator	shall	verify	that	the	AGD	describes	how	the	administrator	configures	the	management
functions.
KMD
There	are	no	KMD	evaluation	activities	for	this	component.
Tests
Testing	for	this	component	is	performed	through	evaluation	of	FMT_MOF_EXT.1.

FMT_SMR.2	Restrictions	on	Security	Roles

TSS
The	evaluator	shall	confirm	that	the	TSS	describes	the	mechanisms	by	which	client	applications	can
exclusively	access	their	own	encrypted	data	and	administrators	cannot	access	client	application	encrypted
data.	The	evaluator	shall	also	confirm	the	TSS	describes	the	mechanisms	that	allow	only	administrators	to
perform	privileged	functions.
Guidance
The	evaluator	shall	verify	that	the	AGD	describes	how	the	administrator	configures	the	management
functions.
KMD
There	are	no	KMD	evaluation	activities	for	this	component.
Tests
Testing	for	this	component	is	performed	through	evaluation	of	FMT_MOF_EXT.1.

2.2.5	Protection	of	the	TSF

FPT_FLS.1/FI	Failure	with	Preservation	of	Secure	State	(Fault	Injection)

TSS
The	evaluator	shall	examine	the	TSS	to	verify	that	it	describes	the	actions	taken	when	the	TOE	experiences
fault	injection	and	how	the	DSC	preserves	a	secure	state.

The	evaluator	shall	verify	that	the	TSS	describes	the	state	of	the	DSC	when	the	firmware	validity	checks	fail,
including	the	various	failure	modes	assumed.
Guidance
The	evaluator	shall	examine	the	operational	guidance	to	verify	that	it	describes	what	actions	should	be	taken
to	attempt	to	resolve	the	failed	state.
KMD
There	are	no	KMD	evaluation	activities	for	this	component.
Tests
The	evaluator	shall	perform	fault	injection	on	the	DSC	and	attempt	to	extract	a	known	SDO/SDE.

The	evaluator	shall	cause	the	DSC	to	parse	or	generate	an	SDO/SDE	with	a	known	value.	The	evaluator	will
then	cause	the	TOE	to	process	the	SDO/SDE,	possibly	multiple	times,	while	injecting	faults	on	the	TOE.

If	the	evaluator	is	able	to	acquire	the	original	SDO/SDE	or	a	known	result	from	the	DSC	processing	the
SDO/SDE,	the	test	is	a	‘Fail’,	otherwise,	the	test	is	a	‘Pass’.

FPT_MOD_EXT.1	Debug	Modes

TSS
The	evaluator	shall	examine	the	TSS	to	ensure	it	describes	the	mechanisms	the	TSF	employs	to	prevent
access	to	debug	modes	with	a	brief	description	of	each	debug	mode	supported.
Guidance
There	are	no	AGD	evaluation	activities	for	this	component.
KMD
There	are	no	KMD	evaluation	activities	for	this	component.
Tests
The	evaluator	shall	attempt	to	exercise	any	single	function	from	each	supported	debug	mode.	If	the	evaluator
is	able	to	exercise	any	function	from	any	of	the	supported	debug	modes,	the	test	is	a	‘Fail’,	otherwise,	the	test
is	a	‘Pass’.

FPT_PHP.3	Resistance	to	Physical	Attack

TSS
The	evaluator	shall	examine	the	TSS	to	ensure	it	describes	the	methods	used	by	the	TOE	to	detect	physical
tampering	and	how	the	TOE	will	respond	when	physical	tampering	has	been	detected.

The	evaluator	shall	also	examine	the	TSS	to	ensure	that	it	documents	the	temperature	and	voltage	ranges	in
which	the	TSF	is	assured	to	operate	properly.
Guidance
There	are	no	AGD	evaluation	activities	for	this	component.
KMD
There	are	no	KMD	evaluation	activities	for	this	component.
Tests
The	evaluator	shall	perform	the	following	tests:

Test	1:	Fault	Injection

Refer	to	the	testing	for	FPT_FLS.1/FI.

Test	2:	Temperature	and	Power	Analysis

The	following	testing	is	derived	from	[ISO	24759]	test	procedures	TE07.77.01	through	TE07.77.03:

The	evaluator	shall	configure	the	ambient	temperature	and	voltage	close	to	the	approximate	extreme	of	the
normal	operating	ranges	specified	in	the	TSS	and	verify	that	the	TSF	continues	to	function	as	expected.	The
evaluator	shall	determine	‘expected	functionality’	based	on	how	the	TSS	describes	the	TOE’s	reaction	to	an
environmental	failure.	For	example,	if	the	TSS	states	that	the	TOE’s	response	is	to	shut	down,	it	can	be
assumed	that	the	TOE	functions	as	expected	if	it	does	not	shut	down.	If	the	TSS	states	that	the	TOE’s
response	is	to	zeroize	certain	data,	it	can	be	assumed	that	the	TOE	functions	as	expected	if	the	evaluator
performs	functions	that	rely	on	known	data	values	and	obtain	results	that	indicate	non-zero	values.

The	evaluator	shall	then	extend	the	temperature	and	voltage	outside	of	the	specified	normal	range	and	verify
that	the	TOE	responds	in	the	manner	specified	in	the	ST.	If	the	TOE’s	response	is	to	zeroize	known	data,	the
evaluator	shall	return	the	ambient	temperature	and	voltage	to	a	normal	range,	perform	functions	that	rely	on
known	data	values,	and	observe	that	the	results	of	these	functions	are	consistent	with	known	values	of	zero.

FPT_PRO_EXT.1	Root	of	Trust

TSS
The	evaluator	shall	ensure	that	the	TSS	describes	either	a	pre-installed	identity	(contained	within	an	SDO),	or
a	process	on	how	the	TOE	creates	an	identity.	IEEE	802.1ar	is	one	example	of	a	standard	which	a	device	can
use	to	create	such	an	identity.

The	evaluator	shall	additionally	examine	the	TSS	to	ensure	that	it	describes	how	the	Root	of	Trust	is
immutable	or	otherwise	mutable	if	and	only	if	controlled	by	a	unique	identifiable	owner,	the	roles	this	owner
assumes	in	doing	so	(manufacturer	administrator,	owner	administrator,	etc.),	as	well	as	the	circumstances	in
which	the	Root	of	Trust	is	mutable.

[conditional]	For	an	immutable	Root	of	Trust,	the	evaluator	shall	ensure	there	are	no	RoT	update	functions.

[conditional]	For	a	mutable	Root	of	Trust,	the	evaluator	shall	ensure	the	Root	of	Trust	update	mechanism	uses
an	approved	method	for	authenticating	the	source	of	the	update.
Guidance
For	mutable	Root	of	Trust	data,	the	evaluator	shall	confirm	the	AGD	contains	an	approved	authenticated
method	for	modifying	the	Root	of	Trust	identity.
KMD
There	are	no	KMD	evaluation	activities	for	this	component.
Tests
Immutability

For	immutable	Root	of	Trust	identity,	the	evaluator	shall	confirm	a	successful	evaluation	of	FPT_PHP.1
(Physical	Protection).	Mutability

For	a	mutable	Root	of	Trust	identity,	the	evaluator	shall	perform	the	following	tests:

1.	 Create	or	use	an	authenticated	Root	of	Trust	identity,	confirm	the	authenticated	method	for	modifying
the	Root	of	Trust	identity	succeeds.

2.	 Create	or	use	an	unauthenticated	Root	of	Trust	identity,	confirm	the	target	fails	to	modify	the	Root	of
Trust	identity.

FPT_ROT_EXT.1	Root	of	Trust	Services

TSS
The	evaluator	shall	ensure	that	the	TSS	identifies	the	Roots	of	Trust	it	uses	(including	but	not	limited	to	the
Roots	of	Trust	identified	in	the	selections	in	this	requirement)	and	describes	their	function	in	the	context	of
the	TOE.
Guidance
There	are	no	AGD	evaluation	activities	for	this	component.
KMD
There	are	no	KMD	evaluation	activities	for	this	component.
Tests
Root	of	Trust	for	Storage

The	evaluator	shall	confirm	a	successful	evaluation	of	FCS_CKM.1/KEK,	FCS_STG_EXT.1,	FCS_STG_EXT.2,
FCS_STG_EXT.3,	FPT_PHP.3.	Root	of	Trust	for	Authorization

The	evaluator	shall	confirm	a	successful	evaluation	of	FIA_AFL_EXT.1.	Root	of	Trust	for	Measurement

The	evaluator	shall	confirm	a	successful	evaluation	of	FCS_COP.1/Hash	Root	of	Trust	for	Reporting

The	evaluator	shall	confirm	a	successful	evaluation	of	FCS_COP.1/SigGen.

FPT_ROT_EXT.2	Root	of	Trust	for	Storage

TSS
The	evaluator	shall	ensure	that	the	TSS	describes	how	the	Root	of	Trust	for	Storage	prevents	unauthorized
access	to	SDOs.	The	evaluator	shall	also	examine	the	TSS	to	verify	that	it	uses	approved	mechanisms	to
protect	the	integrity	of	SDOs.

Guidance
There	are	no	AGD	evaluation	activities	for	this	component.
KMD
There	are	no	KMD	evaluation	activities	for	this	component.
Tests
Testing	for	this	component	is	completed	through	evaluation	of	FCS_CKM.1/KEK,	FCS_STG_EXT.1,
FCS_STG_EXT.2,	FCS_STG_EXT.3,	and	FPT_PHP.3.

FPT_RPL_EXT.1	Replay	Prevention

TSS
The	evaluator	shall	examine	the	TSS	to	verify	that	it	describes	the	mechanism	employed	for	preventing	replay
of	user	authorization	of	operations	on	SDOs	and	that	access	is	denied	when	replay	is	detected.
Guidance
The	evaluator	shall	examine	the	operational	guidance	to	verify	that	it	describes	how	to	enforce	Replay
Prevention	if	configuration	is	necessary.
KMD
There	are	no	KMD	evaluation	activities	for	this	component.
Tests
The	evaluator	shall	perform	an	authorization	of	an	operation	on	an	SDO	and	capture	or	retain	that
authorization	for	reuse.	The	evaluator	shall	then	attempt	to	replay	that	same	authorization	and	ensure	that
the	DSC	does	not	allow	the	authorization	to	take	place.	If	the	replay	of	the	authorization	is	allowed	to	take
place	for	an	operation	on	SDOs,	the	test	is	a	‘Fail’,	otherwise,	the	test	is	a	‘Pass’.

FPT_STM.1	Reliable	Time	Stamps

TSS
The	evaluator	shall	examine	the	TSS	to	ensure	that	it	lists	each	security	function	that	makes	use	of	time.	The
TSS	provides	a	description	of	how	the	time	is	maintained	and	considered	reliable	in	the	context	of	each	of	the
time	related	functions.
Guidance
The	evaluator	shall	examine	the	guidance	documentation	to	ensure	it	instructs	the	administrator	how	to	set
the	time	or	indicates	any	configuration	steps	required	for	the	TSF	to	receive	time	data	from	an	external
source.
KMD
There	are	no	KMD	evaluation	activities	for	this	component.
Tests
The	evaluator	shall	perform	the	following	tests:

Test	1:	[conditional]:	If	the	TSF	provides	a	mechanism	to	manually	set	the	time,	the	evaluator	shall	use
the	guidance	documentation	to	set	the	time.	The	evaluator	shall	then	use	an	available	interface	to
observe	that	the	time	was	set	correctly.
Test	2:	[conditional]:	If	the	TSF	receives	time	data	from	some	source	outside	the	TOE,	the	evaluator
shall	use	the	guidance	documentation	to	configure	the	external	time	source	(if	applicable).	The	evaluator
shall	observe	that	the	time	has	been	set	to	the	expected	value.

FPT_TST.1	TSF	Testing

TSS
The	evaluator	shall	examine	the	TSS	and	other	vendor	documentation	and	ensure	they	describe	the	methods
used	to	verify	integrity	of	the	TSF	and	TSF	data.	The	evaluator	shall	also	verify	that	the	TSS	describes	how
the	tests	are	performed	automatically	and	autonomously	(without	intervention).
Guidance
The	evaluator	shall	examine	the	operational	guidance	to	ensure	it	provides	authorized	users	with	the
capability	to	verify	the	integrity	of	the	TSF	and	its	data.
KMD
There	are	no	KMD	evaluation	activities	for	this	component.
Tests

Test	1:	The	evaluator	shall	verify	that	the	DSC	performs	an	integrity	check	of	all	TSF,	including	data,	as
well	as	performing	KATs	for	those	functions.	The	evaluator	shall	verify	failures	using	malformed	known
answer	test	data	(for	example,	unexpected	input	or	output	values).
Test	2:	The	evaluator	shall	ensure	that	when	an	integrity	check	failure	occurs	specific	to	failing	KATs
and	failure	to	verify	the	integrity	of	the	TSF,	the	TOE	will	prevent	any	further	processing	of	the	current
TSF	and	user	data.

2.2.6	Resource	Utilization	(FRU)

FRU_FLT.1	Degraded	Fault	Tolerance

TSS
The	evaluator	shall	examine	the	TSS	and	other	vendor	documentation	and	ensure	they	describe	the	response
and	state	of	TSF	data	to	each	type	of	fault	injection	into	the	TOE.
Guidance
There	are	no	AGD	evaluation	activities	for	this	component.
KMD
There	are	no	KMD	evaluation	activities	for	this	component.
Tests
The	evaluator	shall	process	SDOs/SDEs	while	applying	each	type	of	identified	Fault	Injection	into	the	TSF.

The	evaluator	will	note	whether	the	TSF	response	is	as	noted	in	the	TSS	and	whether	the	state	can	be
confirmed.	If	the	response	and	state	are	as	documented,	the	test	is	a	‘Pass’,	otherwise,	the	test	is	a	‘Fail’.

2.3	Evaluation	Activities	for	Selection-Based	SFRs
2.3.1	User	Data	Protection

FDP_DAU.1/prove	Basic	Data	Authentication	(for	Use	with	The	Prove	Service)

TSS
The	evaluator	shall	examine	the	TSS	and	ensure	it	describes	the	data	that	is	validitystamped	and	where
applicable,	authenticity-stamped	to	the	level	of	understanding	the	DSC	has	about	the	data	or	its	origin	(from
the	user	providing	it	to	the	Prove	service).	The	evaluator	shall	also	ensure	that	the	TSS	describes	how	the
evidence	of	validity	or	authenticity	is	generated,	including	the	subjects	who	perform	the	verification,	and	the
form	the	validity	or	authenticity	stamp	is	represented	(i.e.	a	cryptographic	signature,	MAC	using	a	symmetric
key	shared	with	the	receiver,	etc.).
Guidance
The	evaluator	shall	ensure	that	the	operational	guidance	describes	how	to	configure	validity-stamping	on	the
TOE.
KMD
There	are	no	KMD	evaluation	activities	for	this	component.
Tests
The	following	testing	may	require	the	TOE	developer	to	make	a	test	harness	available	to	the	evaluator	that
allows	the	evaluator	to	interface	directly	with	the	DSC.	Tests	may	also	require	the	use	of	an	automated	script
provided	by	either	the	vendor	or	the	evaluator.	If	a	test	script	is	made	available,	the	evaluator	shall	verify	that
it	includes	sufficient	detail	to	validate	the	claims	made	in	the	TSS.

Test	1:	Demonstrate	the	TOE	can	validity-stamp	data.

For	each	configurable	option	to	validity-stamp	data,	the	evaluator	shall	configure	the	TOE	to	create	a	data
object	or	import	a	data	object	which	has	not-yet	been	validity-stamped.	The	evaluator	shall	then	instruct	the
TOE	to	validity-stamp	this	data	object.	The	evaluator	shall	then	export	each	data	object	and	demonstrate	it
has	been	validity-stamped	in	accordance	with	the	configured	options.

Test	2:	Demonstrate	the	TOE	can	disable	validity-stamping	of	data	objects.

The	evaluator	shall	disable,	or	ensure	validity-stamping	has	been	disabled	on	the	TOE.

The	evaluator	shall	create	a	data	object	on	the	TOE	or	import	an	already-created	data	object	which	has	not
been	validity-signed.

The	evaluator	shall	export	that	data	object	and	verify	it	has	not	been	validity-stamped.

FDP_FRS_EXT.2	Factory	Reset	Behavior

TSS
The	evaluator	shall	examine	the	TSS	to	determine	the	pre-installed	SDOs	that	are	reverted	to	their	factory
settings	when	a	factory	reset	occurs,	what	the	factory	settings	are	for	those	SDOs,	and	that	the	TSS	states
that	all	non-persistent	SDOs	are	destroyed.
Guidance
The	evaluator	shall	examine	the	operational	guidance	and	verify	that	it	identifies	the	pre-installed	SDOs	that
are	reverted	to	their	initial	values	when	a	factory	reset	has	been	performed.
KMD
There	are	no	KMD	evaluation	activities	for	this	component.
Tests
The	evaluator	shall	perform	the	following	test:

1.	 The	evaluator	shall	use	each	supported	role	to	create	or	import	an	SDE	or	SDO	that	has	known	data.
2.	 The	evaluator	shall	then	verify	that	the	created	SDE/SDO	resides	either	within	the	DSC,	or	under	the

control	of	the	DSC.
3.	 The	evaluator	shall	perform	some	action	for	each	created	or	imported	SDE/SDO	in	step	1	that

demonstrates	that	the	SDE/SDO	has	been	set	to	the	indicated	value.
4.	 For	each	pre-installed	SDO	that	is	identified	in	FDP_FRS_EXT.2.1,	the	evaluator	shall	perform	some

action	to	verify	what	the	current	value	of	that	SDO	is.
5.	 The	evaluator	shall	initiate	a	factory	reset.
6.	 For	each	operation	in	step	3,	the	evaluator	shall	re-attempt	the	operation	and	verify	that	it	no	longer

completes	successfully	because	the	SDE/SDO	data	has	been	erased.
7.	 For	each	pre-installed	SDO	that	is	identified	in	step	4,	the	evaluator	shall	reattempt	the	operation	and

verify	that	the	SDOs	have	been	set	to	their	factory	default	values.

FDP_MFW_EXT.2	Basic	Firmware	Integrity

TSS
The	evaluator	shall	verify	that	the	TSS	describes	which	critical	memory	is	measured	for	these	integrity	values
and	how	the	measurement	is	performed	(including	which	TOE	software	measures	the	memory	integrity
values,	how	that	software	accesses	the	critical	memory,	and	which	algorithms	are	used).
Guidance
If	the	integrity	values	are	provided	to	the	administrator,	the	evaluator	shall	verify	that	the	AGD	guidance
contains	instructions	for	retrieving	these	values	and	information	for	interpreting	them.	For	example,	if
multiple	measurements	are	taken,	what	those	measurements	are	and	how	changes	to	those	values	relate	to

changes	in	the	device	state.
KMD
There	are	no	KMD	evaluation	activities	for	this	component.
Tests
Note	that	the	following	test	may	require	the	developer	to	provide	access	to	a	test	platform	that	provides	the
evaluator	with	tools	that	are	not	typically	available	to	end	users.

The	evaluator	shall	repeat	the	following	test	for	each	measurement:

The	evaluator	shall	boot	the	TOE	in	an	approved	state	and	record	the	measurement	taken.	The	evaluator	shall
modify	the	critical	memory	or	value	that	is	measured.	The	evaluator	shall	reboot	the	TOE	and	verify	that	the
measurement	changed.

FDP_MFW_EXT.3	Firmware	Authentication	with	Identity	of	Guarantor

TSS
The	evaluator	shall	examine	the	TSS	to	ensure	it	describes	the	methods	and	identities	used	to	verify	integrity
and	authenticity	of	the	firmware.	The	TSS	shall	identify	the	Guarantor	and	how	to	verify	its	identity.
Guidance
There	are	no	guidance	activities	for	this	component.
KMD
There	are	no	KMD	evaluation	activities	for	this	component.
Tests
The	TOE	guarantees	the	authenticity	of	the	firmware	using	the	identity	of	the	Guarantor.	This	prevents
impersonating	a	Guarantor	when	sending	firmware	to	a	device	or	modifying	the	firmware	in	transit.

Test	1:	Verify	Authentic	Firmware

The	evaluator	shall	trigger	the	TOE	to	load	and	evaluate	the	authenticity	of	authentic	firmware	according	the
methods	described	in	the	TSS.	The	evaluator	shall	ensure	that	the	TOE	provides	a	clear	indication	of	the
success	of	the	evaluation	to	consider	the	test	a	‘Pass’,	otherwise,	the	test	is	a	‘Fail’.

Test	2:	Verify	Unauthentic	Firmware

The	evaluator	shall	deliberately	modify	authentic	firmware.

The	evaluator	shall	trigger	the	TOE	to	load	and	evaluate	the	authenticity	of	the	deliberately	modified
firmware	according	the	methods	described	in	the	TSS.	The	evaluator	shall	ensure	that	the	TOE	provides	a
clear	indication	of	the	failure	of	the	evaluation	to	consider	the	test	a	‘Pass’,	otherwise,	the	test	is	a	‘Fail’.

2.3.2	Identification	and	Authentication

FIA_AFL_EXT.2	Authorization	Failure	Response

TSS
The	evaluator	shall	examine	the	TSS	to	determine	that	it	describes	the	method	by	which	access	to	an	SDO	is
restored	following	a	lockout	that	results	from	excessive	authentication	failures.
Guidance
The	evaluator	shall	examine	the	guidance	to	ensure	that	it	describes	the	method	by	which	an	administrator
unlocks	access	to	an	SDO	following	a	lockout	that	results	from	excessive	authentication	failures.
KMD
There	are	no	KMD	evaluation	activities	for	this	component.
Tests
The	evaluator	shall	intentionally	fail	authentication	attempts	to	access	an	SDO	until	they	are	locked	out	from
interacting	with	it.	The	evaluator	shall	then	follow	the	operational	guidance	to	unlock	access	to	the	SDO	and
verify	that	it	was	successful	by	subsequently	using	valid	credentials	to	access	the	SDO.

2.3.3	Protection	of	the	TSF

FPT_FLS.1/FW	Failure	with	Preservation	of	Secure	State	(Firmware)

TSS
The	evaluator	shall	examine	the	TSS	to	verify	that	it	describes	the	actions	taken	when	the	TOE	experiences
each	of	the	stated	failures	and	how	these	actions	ensure	the	DSC	preserves	a	secure	state.

The	evaluator	shall	verify	that	the	TSS	describes	the	state	of	the	DSC	when	the	firmware	validity	checks	fail,
including	the	various	failure	modes	assumed.
Guidance
For	each	failure	state,	the	evaluator	shall	examine	the	operational	guidance	to	verify	that	it	describes	what
actions	should	be	taken	to	attempt	to	resolve	the	failure	state.
KMD
There	are	no	KMD	evaluation	activities	for	this	component.
Tests
Note	that	this	test	requires	firmware	builds	that	are	deliberately	invalidated	to	cause	authenticity,	integrity,
and	rollback	violation	failures.

The	evaluator	shall	examine	the	TOE’s	behavior	when	it	is	loaded	with	a	firmware	build	that	causes	a
firmware	failure.	The	evaluator	shall	ensure	that	when	the	failure	occurs,	the	TOE	prevents	further
processing	of	TSF	and	user	data	and	performs	any	actions	consistent	with	maintaining	a	secure	state	as
described	in	the	TSS.

The	evaluator	shall	repeat	this	test	as	necessary	to	observe	each	of	the	specific	firmware	failures	identified	in
the	SFR.

FPT_RPL.1/Rollback	Replay	Detection	(Rollback)

TSS
The	evaluator	shall	examine	the	TSS	and	other	vendor	documentation	and	ensure	that	they	describe	the
methods	used	to	guarantee	the	validity	of	firmware	identifiers	and	prevents	the	TSF	from	executing	older
instances	than	that	which	is	currently	authorized.
Guidance
There	are	no	AGD	evaluation	activities	for	this	component.
KMD
There	are	no	KMD	evaluation	activities	for	this	component.
Tests
The	evaluator	shall	repeat	the	following	tests	to	cover	all	allowed	firmware	verification	mechanisms	as
described	in	the	TSS.	For	example,	if	the	firmware	verification	mechanism	replaces	an	entire	partition	or
subset	of	the	DSC	scope	containing	many	separate	code	files,	the	evaluator	does	not	need	to	repeat	the	test
for	each	individual	file.

Test	1:	The	evaluator	shall	attempt	to	execute	an	earlier	instance	or	build	of	the	software	(as
determined	by	the	vendor).	The	evaluator	shall	verify	that	this	attempt	fails	by	checking	the	version
identifiers	or	cryptographic	hashes	of	the	firmware	against	those	previously	recorded	and	checking	that
the	values	do	not	correspond	to	an	unauthorized	build.
Test	2:	The	evaluator	shall	attempt	to	execute	a	current	or	later	instance	and	shall	verify	that	the
firmware	execution	succeeds.

2.3.4	Trusted	Paths/Channels

FTP_CCMP_EXT.1	CCM	Protocol

TSS
The	evaluator	shall	verify	that	the	TSS	includes	a	description	of	the	TOE’s	expected	responses	to	CCMP
authentication	failures	and	malformed	or	invalid	CCMP	data	units.
Guidance
There	are	no	AGD	evaluation	activities	for	this	component.
KMD
There	are	no	KMD	evaluation	activities	for	this	component.
Tests
The	evaluator	shall	perform	the	following	tests:

Test	1:	The	evaluator	shall	attempt	to	establish	a	CCMP	connection	to	the	TOE	from	an	external	entity,
observe	the	return	traffic	with	a	network	traffic	analyzer,	and	verify	that	the	connection	succeeds	and
that	the	traffic	is	identified	as	properly	constructed	CCMP	data	units.
Test	2:	The	evaluator	shall	attempt	to	establish	a	CCMP	connection	to	the	TOE	using	five	messages	with
incorrect	or	invalid	authentication	factors	and	verify	that	an	authentication	failure	or	error	status	is
returned.
Test	3:	The	evaluator	shall	attempt	to	establish	a	CCMP	connection	to	the	TOE	using	five	different
messages	that	are	malformed	or	invalid	due	to	noncompliance	with	the	CCMP	standard	and	observe	that
all	connection	attempts	are	unsuccessful.
Test	4:	The	evaluator	shall	establish	a	valid	CCMP	connection	to	the	TOE.	Once	this	has	been
established,	the	evaluator	shall	send	ten	different	messages	that	are	malformed	or	invalid	due	to
noncompliance	with	the	CCMP	standard	and	observe	that	each	of	these	messages	are	rejected.

FTP_GCMP_EXT.1	GCM	Protocol

TSS
The	evaluator	shall	verify	that	the	TSS	includes	a	description	of	the	TOE’s	expected	responses	to	GCMP
authentication	failures	and	malformed	or	invalid	GCMP	data	units.
Guidance
There	are	no	AGD	evaluation	activities	for	this	component.
KMD
There	are	no	KMD	evaluation	activities	for	this	component.
Tests
The	evaluator	shall	perform	the	following	tests:

Test	1:	The	evaluator	shall	attempt	to	establish	a	GCMP	connection	to	the	TOE	from	an	external	entity,
observe	the	return	traffic	with	a	network	traffic	analyzer,	and	verify	that	the	connection	succeeds	and
that	the	traffic	is	identified	as	properly	constructed	GCMP	data	units.
Test	2:	The	evaluator	shall	attempt	to	establish	a	GCMP	connection	to	the	TOE	using	five	messages	with
incorrect	or	invalid	authentication	factors	and	verify	that	an	authentication	failure	or	error	status	is
returned.
Test	3:	The	evaluator	shall	attempt	to	establish	a	GCMP	connection	to	the	TOE	using	five	different
messages	that	are	malformed	or	invalid	due	to	noncompliance	with	the	GCMP	standard	and	observe	that
all	connection	attempts	are	unsuccessful.
Test	4:	The	evaluator	shall	establish	a	valid	GCMP	connection	to	the	TOE.	Once	this	has	been
established,	the	evaluator	shall	send	ten	different	messages	that	are	malformed	or	invalid	due	to
noncompliance	with	the	GCMP	standard	and	observe	that	each	of	these	messages	are	rejected.

FTP_ITC_EXT.1	Cryptographically	Protected	Communications	Channels

TSS
The	evaluator	shall	review	the	TSS	to	determine	that	it	lists	all	trusted	channels	the	TOE	uses	for	remote
communications,	including	both	the	external	entities	and	remote	users	used	for	the	channel	as	well	as	the
protocol	that	is	used	for	each.
Guidance
There	are	no	AGD	evaluation	activities	for	this	component.
KMD
There	are	no	KMD	evaluation	activities	for	this	component.
Tests
The	evaluator	shall	configure	the	TOE	to	communicate	with	each	external	IT	entity	or	type	of	remote	user
identified	in	the	TSS.	The	evaluator	shall	monitor	network	traffic	while	the	TSF	performs	communication	with
each	of	these	destinations.	The	evaluator	shall	ensure	that	for	each	session	a	trusted	channel	was	established
in	conformance	with	the	protocols	identified	in	the	selection.

FTP_ITE_EXT.1	Encrypted	Data	Communications

TSS
The	evaluator	shall	review	the	TSS	to	determine	that	it	lists	all	encryption	mechanisms	the	TOE	uses	for
protected	external	communications,	along	with	the	types	of	communications	protected	using	each
mechanism.
Guidance
There	are	no	AGD	evaluation	activities	for	this	component.
KMD
There	are	no	KMD	evaluation	activities	for	this	component.
Tests
The	evaluator	shall	configure	the	TOE	to	communicate	with	each	external	entity	identified	in	the	TSS.	The
evaluator	shall	initiate	a	transaction	that	will	result	in	data	being	transferred	to	the	TOE	through	the
mechanism	and	other	data	returned	to	the	initiating	entity	through	the	mechanism.	The	evaluator	must	verify
that	the	data	returned	to	the	entity	was	encrypted	using	the	documented	mechanism	when	received.

FTP_ITP_EXT.1	Physically	Protected	Channel

TSS
The	evaluator	shall	review	the	TSS	to	determine	that	it	lists	all	mechanisms	the	TOE	uses	for	physically
protected	external	communications,	along	with	the	types	of	communications	protected	using	each
mechanism.
Guidance
There	are	no	AGD	evaluation	activities	for	this	component.
KMD
There	are	no	KMD	evaluation	activities	for	this	component.
Tests
There	are	no	test	activities	for	this	component.

2.4	Evaluation	Activities	for	Objective	SFRs
The	PP-Module	does	not	define	any	objective	requirements.

3	Evaluation	Activities	for	SARs
3.1	Class	ADV:	Development
ADV_FSP.1	Basic	Functional	Specification	(ADV_FSP.1)

There	are	no	specific	assurance	activities	associated	with	these	SARs,	except	ensuring	the	information	is
provided.	The	functional	specification	documentation	is	provided	to	support	the	evaluation	activities
described	in	Section	5.1	Security	Functional	Requirements,	and	other	activities	described	for	AGD,	ATE,	and
AVA	SARs.	The	requirements	on	the	content	of	the	functional	specification	information	is	implicitly	assessed
by	virtue	of	the	other	assurance	activities	being	performed;	if	the	evaluator	is	unable	to	perform	an	activity
because	there	is	insufficient	interface	information,	then	an	adequate	functional	specification	has	not	been
provided.

3.2	Class	AGD:	Guidance	Documentation
AGD_OPE.1	Operational	User	Guidance	(AGD_OPE.1)

Some	of	the	contents	of	the	operational	guidance	are	verified	by	the	assurance	activities	in	Section	5.1
Security	Functional	Requirements	and	evaluation	of	the	OS	according	to	the	[CEM].	The	following	additional
information	is	also	required.	If	cryptographic	functions	are	provided	by	the	OS,	the	operational	guidance	shall
contain	instructions	for	configuring	the	cryptographic	engine	associated	with	the	evaluated	configuration	of
the	OS.	It	shall	provide	a	warning	to	the	administrator	that	use	of	other	cryptographic	engines	was	not
evaluated	nor	tested	during	the	CC	evaluation	of	the	OS.	The	documentation	must	describe	the	process	for
verifying	updates	to	the	OS	by	verifying	a	digital	signature	–	this	may	be	done	by	the	OS	or	the	underlying
platform.	The	evaluator	will	verify	that	this	process	includes	the	following	steps:	Instructions	for	obtaining	the
update	itself.	This	should	include	instructions	for	making	the	update	accessible	to	the	OS	(e.g.,	placement	in	a
specific	directory).	Instructions	for	initiating	the	update	process,	as	well	as	discerning	whether	the	process
was	successful	or	unsuccessful.	This	includes	generation	of	the	hash/digital	signature.	The	OS	will	likely

file:///home/runner/work/dsc/dsc/commoncriteria.github.io/pp/dsc/dsc-sd.html?expand=on#bibCEM

contain	security	functionality	that	does	not	fall	in	the	scope	of	evaluation	under	this	PP.	The	operational
guidance	shall	make	it	clear	to	an	administrator	which	security	functionality	is	covered	by	the	evaluation
activities.

AGD_PRE.1	Preparative	Procedures	(AGD_PRE.1)

As	indicated	in	the	introduction	above,	there	are	significant	expectations	with	respect	to	the	documentation—
especially	when	configuring	the	operational	environment	to	support	OS	functional	requirements.	The
evaluator	shall	check	to	ensure	that	the	guidance	provided	for	the	OS	adequately	addresses	all	platforms
claimed	for	the	OS	in	the	ST.

3.3	Class	ALC:	Life-cycle	Support
ALC_CMC.1	Labeling	of	the	TOE	(ALC_CMC.1)

The	evaluator	will	check	the	ST	to	ensure	that	it	contains	an	identifier	(such	as	a	product	name/version
number)	that	specifically	identifies	the	version	that	meets	the	requirements	of	the	ST.	Further,	the	evaluator
will	check	the	AGD	guidance	and	OS	samples	received	for	testing	to	ensure	that	the	version	number	is
consistent	with	that	in	the	ST.	If	the	vendor	maintains	a	web	site	advertising	the	OS,	the	evaluator	will
examine	the	information	on	the	web	site	to	ensure	that	the	information	in	the	ST	is	sufficient	to	distinguish
the	product.

ALC_CMS.1	TOE	CM	Coverage	(ALC_CMS.1)

The	"evaluation	evidence	required	by	the	SARs"	in	this	PP	is	limited	to	the	information	in	the	ST	coupled	with
the	guidance	provided	to	administrators	and	users	under	the	AGD	requirements.	By	ensuring	that	the	OS	is
specifically	identified	and	that	this	identification	is	consistent	in	the	ST	and	in	the	AGD	guidance	(as	done	in
the	assurance	activity	for	ALC_CMC.1),	the	evaluator	implicitly	confirms	the	information	required	by	this
component.	Life-cycle	support	is	targeted	aspects	of	the	developer’s	life-cycle	and	instructions	to	providers	of
applications	for	the	developer’s	devices,	rather	than	an	in-depth	examination	of	the	TSF	manufacturer’s
development	and	configuration	management	process.	This	is	not	meant	to	diminish	the	critical	role	that	a
developer’s	practices	play	in	contributing	to	the	overall	trustworthiness	of	a	product;	rather,	it’s	a	reflection
on	the	information	to	be	made	available	for	evaluation.	
The	evaluator	will	ensure	that	the	developer	has	identified	(in	guidance	documentation	for	application
developers	concerning	the	targeted	platform)	one	or	more	development	environments	appropriate	for	use	in
developing	applications	for	the	developer’s	platform.	For	each	of	these	development	environments,	the
developer	shall	provide	information	on	how	to	configure	the	environment	to	ensure	that	buffer	overflow
protection	mechanisms	in	the	environment(s)	are	invoked	(e.g.,	compiler	and	linker	flags).	The	evaluator	will
ensure	that	this	documentation	also	includes	an	indication	of	whether	such	protections	are	on	by	default,	or
have	to	be	specifically	enabled.	The	evaluator	will	ensure	that	the	TSF	is	uniquely	identified	(with	respect	to
other	products	from	the	TSF	vendor),	and	that	documentation	provided	by	the	developer	in	association	with
the	requirements	in	the	ST	is	associated	with	the	TSF	using	this	unique	identification.

ALC_TSU_EXT.1	Timely	Security	Updates

The	evaluator	will	verify	that	the	TSS	contains	a	description	of	the	timely	security	update	process	used	by	the
developer	to	create	and	deploy	security	updates.	The	evaluator	will	verify	that	this	description	addresses	the
entire	application.	The	evaluator	will	also	verify	that,	in	addition	to	the	OS	developer’s	process,	any	third-
party	processes	are	also	addressed	in	the	description.	The	evaluator	will	also	verify	that	each	mechanism	for
deployment	of	security	updates	is	described.	
The	evaluator	will	verify	that,	for	each	deployment	mechanism	described	for	the	update	process,	the	TSS	lists
a	time	between	public	disclosure	of	a	vulnerability	and	public	availability	of	the	security	update	to	the	OS
patching	this	vulnerability,	to	include	any	third-party	or	carrier	delays	in	deployment.	The	evaluator	will	verify
that	this	time	is	expressed	in	a	number	or	range	of	days.	
The	evaluator	will	verify	that	this	description	includes	the	publicly	available	mechanisms	(including	either	an
email	address	or	website)	for	reporting	security	issues	related	to	the	OS.	The	evaluator	shall	verify	that	the
description	of	this	mechanism	includes	a	method	for	protecting	the	report	either	using	a	public	key	for
encrypting	email	or	a	trusted	channel	for	a	website.

3.4	Class	ATE:	Tests
ATE_IND.1	Independent	Testing	–	Conformance	(ATE_IND.1)

The	evaluator	will	prepare	a	test	plan	and	report	documenting	the	testing	aspects	of	the	system,	including
any	application	crashes	during	testing.	The	evaluator	shall	determine	the	root	cause	of	any	application
crashes	and	include	that	information	in	the	report.	The	test	plan	covers	all	of	the	testing	actions	contained	in
the	[CEM]	and	the	body	of	this	PP’s	Assurance	Activities.	
While	it	is	not	necessary	to	have	one	test	case	per	test	listed	in	an	Assurance	Activity,	the	evaluator	must
document	in	the	test	plan	that	each	applicable	testing	requirement	in	the	ST	is	covered.	The	test	plan
identifies	the	platforms	to	be	tested,	and	for	those	platforms	not	included	in	the	test	plan	but	included	in	the
ST,	the	test	plan	provides	a	justification	for	not	testing	the	platforms.	This	justification	must	address	the
differences	between	the	tested	platforms	and	the	untested	platforms,	and	make	an	argument	that	the
differences	do	not	affect	the	testing	to	be	performed.	It	is	not	sufficient	to	merely	assert	that	the	differences
have	no	affect;	rationale	must	be	provided.	If	all	platforms	claimed	in	the	ST	are	tested,	then	no	rationale	is
necessary.	The	test	plan	describes	the	composition	of	each	platform	to	be	tested,	and	any	setup	that	is
necessary	beyond	what	is	contained	in	the	AGD	documentation.	It	should	be	noted	that	the	evaluator	is
expected	to	follow	the	AGD	documentation	for	installation	and	setup	of	each	platform	either	as	part	of	a	test
or	as	a	standard	pre-test	condition.	This	may	include	special	test	drivers	or	tools.	For	each	driver	or	tool,	an

file:///home/runner/work/dsc/dsc/commoncriteria.github.io/pp/dsc/dsc-sd.html?expand=on#bibCEM

argument	(not	just	an	assertion)	should	be	provided	that	the	driver	or	tool	will	not	adversely	affect	the
performance	of	the	functionality	by	the	OS	and	its	platform.	
This	also	includes	the	configuration	of	the	cryptographic	engine	to	be	used.	The	cryptographic	algorithms
implemented	by	this	engine	are	those	specified	by	this	PP	and	used	by	the	cryptographic	protocols	being
evaluated	(IPsec,	TLS).	The	test	plan	identifies	high-level	test	objectives	as	well	as	the	test	procedures	to	be
followed	to	achieve	those	objectives.	These	procedures	include	expected	results.	
The	test	report	(which	could	just	be	an	annotated	version	of	the	test	plan)	details	the	activities	that	took	place
when	the	test	procedures	were	executed,	and	includes	the	actual	results	of	the	tests.	This	shall	be	a
cumulative	account,	so	if	there	was	a	test	run	that	resulted	in	a	failure;	a	fix	installed;	and	then	a	successful
re-run	of	the	test,	the	report	would	show	a	“fail”	and	“pass”	result	(and	the	supporting	details),	and	not	just
the	“pass”	result.

3.5	Class	AVA:	Vulnerability	Assessment
AVA_VAN.1	Vulnerability	Survey	(AVA_VAN.1)

The	evaluator	will	generate	a	report	to	document	their	findings	with	respect	to	this	requirement.	This	report
could	physically	be	part	of	the	overall	test	report	mentioned	in	ATE_IND,	or	a	separate	document.	The
evaluator	performs	a	search	of	public	information	to	find	vulnerabilities	that	have	been	found	in	similar
applications	with	a	particular	focus	on	network	protocols	the	application	uses	and	document	formats	it
parses.	The	evaluator	documents	the	sources	consulted	and	the	vulnerabilities	found	in	the	report.	
For	each	vulnerability	found,	the	evaluator	either	provides	a	rationale	with	respect	to	its	non-applicability,	or
the	evaluator	formulates	a	test	(using	the	guidelines	provided	in	ATE_IND)	to	confirm	the	vulnerability,	if
suitable.	Suitability	is	determined	by	assessing	the	attack	vector	needed	to	take	advantage	of	the
vulnerability.	If	exploiting	the	vulnerability	requires	expert	skills	and	an	electron	microscope,	for	instance,
then	a	test	would	not	be	suitable	and	an	appropriate	justification	would	be	formulated.

4	Required	Supplementary	Information
This	Supporting	Document	has	no	required	supplementary	information	beyond	the	ST,	operational	guidance,
and	testing.

Appendix	A	-	References
Identifier Title

[CEM] Common	Evaluation	Methodology	for	Information	Technology	Security	-	Evaluation
Methodology,	CCMB-2012-09-004,	Version	3.1,	Revision	4,	September	2012.

[CESG] CESG	-	End	User	Devices	Security	and	Configuration	Guidance

[CSA] Computer	Security	Act	of	1987,	H.R.	145,	June	11,	1987.

[OMB] Reporting	Incidents	Involving	Personally	Identifiable	Information	and	Incorporating	the	Cost
for	Security	in	Agency	Information	Technology	Investments,	OMB	M-06-19,	July	12,	2006.

http://www.commoncriteriaportal.org/files/ccfiles/CEMV3.1R4.pdf
https://www.gov.uk/government/collections/end-user-devices-security-guidance
http://csrc.nist.gov/groups/SMA/ispab/documents/csa_87.txt
http://www.whitehouse.gov/sites/default/files/omb/memoranda/fy2006/m06-19.pdf

