Crypto Catalog

Version: 1.0 2017-04-19

National Information Assurance Partnership

Version Date Comment

1.0

Contents

- 1. Introduction
- 1.1. <u>Overview</u>
- 1.2. <u>Terms</u>
- 1.2.1. Common Criteria Terms
- 1.2.2. <u>Technology Terms</u>
- 1.3. Compliant Targets of Evaluation
- 2. Conformance Claims
- 3. Security Problem Description
- 4. Security Requirements
- 4.1. <u>Security Functional Requirements</u>
- 4.1.1. Cryptographic Support (FCS)

Appendix A: References
Appendix B: Acronyms

1. Introduction

1.1 Overview

1.2 Terms

The following sections provide both Common Criteria and technology terms used in this Extended Package.

1.2.1 Common Criteria Terms

Common Criteria (CC)	Common Criteria for Information Technology Security Evaluation.
Extended Package (EP)	An implementation-independent set of security requirements for a category of products, which extends those in a Protection Profile.
Protection Profile (PP)	An implementation-independent set of security requirements for a category of products.
Security Target (ST)	A set of implementation-dependent security requirements for a specific product.
Target of Evaluation (TOE)	The product under evaluation.
TOE Security Functionality (TSF)	The security functionality of the product under evaluation.
TOE Summary Specification (TSS)	A description of how a TOE satisfies the SFRs in a ST.
Security Functional Requirement (SFR)	A requirement for security enforcement by the TOE.
Security Assurance Requirement (SAR)	A requirement to assure the security of the TOE.

1.2.2 Technology Terms

Secure Shell	Cryptographic network protocol for initiating text-based shell sessions on remote
(SSH)	systems.

1.3 Compliant Targets of Evaluation

The Target of Evaluation (TOE) in this EP is a product which acts as an SSH client or server, or both. This EP describes the extended security functionality of SSH in terms of [CC]. This EP can extend the Protection Profiles for *Application Software*, *General-Purpose Operating Systems*, *Mobile Device Management*, or *Virtualization*. It is expected that the content of this EP will be appropriately combined with the base PP to include selection-based requirements in accordance with the selections and/or assignments made, and any optional and/or objective components.

This EP combined with the [AppPP] must include selection-based requirements in accordance with the selections and/or assignments made, and any optional and/or objective components to include: FCS_CKM.2.1, FCS_COP.1.1(*), FCS_RBG_EXT.2.*, FCS_TLSC_EXT.1.*, FIA_X509_EXT.1.*, FIA_X509_EXT.2.*.

This EP combined with the [GPOSPP] must include selection-based requirements in accordance with the selections and/or assignments made, and any optional and/or objective components to include: FCS_CKM.2.1, FCS_COP.1.1(*), FCS_RBG_EXT.1.*, FCS_TLSC_EXT.1.*, FIA_X509_EXT.1.*, FIA_X509_EXT.2.*.

This EP combined with the [MDMPP] must include selection-based requirements in accordance with the selections and/or assignments made, and any optional and/or objective components to include: FCS_CKM.1.1, FCS_COP.1.1(*), FCS_RBG_EXT.1.*, FCS_TLSC_EXT.1.*, FIA_X509_EXT.1.*, FIA_X509_EXT.1.*, FIA_X509_EXT.2.*.

This EP combined with the [VirtPP] must include selection-based requirements in accordance with the selections and/or assignments made, and any optional and/or objective components to include: FIA X509 EXT.1.*, FIA X509 EXT.2.*.

An ST must identify the applicable version of the base PP and this EP in its conformance claims.

2. Conformance Claims

Conformance Statement

This EP serves to extend the PP baselines with additional SFRs and associated Assurance Activities specific to SSH clients and servers. Assurance Activities are the actions that the evaluator performs in order to determine an SSH client or server's compliance to the SFRs. This EP conforms to Common Criteria [CC] for Information Technology Security Evaluation, Version 3.1, Revision 4. It is CC Part 2 extended and CC Part 3 conformant. In order to be conformant to this EP, the ST must include all components in this EP and the associated base PP that are: unconditional (which are always required) selection-based (which are required when certain selections are chosen in the unconditional requirements) and may include optional and/or objective components that are desirable but not required for conformance. In accordance with CC Part 1, dependencies are not included when they are addressed by other SFRs. The assurance activities provide adequate proof that any dependencies are also satisfied.

3. Security Problem Description

This Extended Package does not repeat the threats, assumptions, and organizational security policies identified in any base PPs, though they all apply given the conformance and hence dependence of this EP on it. Together the threats, assumptions and organizational security policies of the base PP and those defined in this EP describe those addressed by the product as the Target of Evaluation.

4. Security Requirements

This chapter describes the security requirements to be fulfilled by the product. Those requirements comprise functional components from Part 2 of [CC]. The following notations are used: Selection (denoted by *italicized text*): is used to select one or more options provided by the [CC] in stating a requirement. Assignment operation (denoted by *italicized text*): is used to assign a specific value to an unspecified parameter, such as the length of a password. Showing the value in square brackets indicates assignment. Iteration operation: are identified with a number inside parentheses (e.g. "(1)").

4.1 Security Functional Requirements

The Security Functional Requirements included in this section are derived from Part 2 of the Common Criteria for Information Technology Security Evaluation, Version 3.1, Revision 4, with additional extended functional components.

4.1.1 Cryptographic Support (FCS)

FCS_COP.1/UDE Cryptographic Operation - User Data Encryption

FCS_COP.1.1(1)

The TSF shall perform user data encryption/decryption in accordance with a specified cryptographic algorithm [selection: cryptographic algorithm] and cryptographic key sizes [selection: key sizes] that meet the following [selection: list of standards] .

The following table provides the allowed choices for completion of the selection operations of FCS COP.1/UDE:

Application Note: There is app note here. What we really want is a nice table of the catalog options. And also, we would like the aactivity to be eactivity.

Assurance Activity ▼

TSS The evaluator shall check that the TSS includes a description of encryption function(s) used for user data encryption. The evaluator should check that this description of the selected encryption function includes the key sizes and modes of operation as specified in the table above per row.

The evaluator shall check that the TSS describes the means by which the TOE satisfies constraints on algorithm parameters included in the selections made for cryptographic algorithm and list of standards.

KMDSD The evaluator shall examine the KMDSD to ensure that the points at which user data encryption and decryption occurs are described, and that the complete data path for user data encryption is described. The evaluator checks that this description is consistent with the relevant parts of the TSS.

If XTS-AES is used as the user data encryption algorithm then the evaluator shall check that the full length keys are created by methods that ensure that the two halves are different and independent.

Guidance If multiple encryption modes are supported, the evaluator examines the guidance documentation to determine that the method of choosing a specific mode/key size by the end user is described.

Tests The following tests are conditional based upon the selections made in the SFR. The evaluator shall perform the following test or witness respective tests executed by the developer if technically possible, otherwise an analysis of the implementation representation has to be performed. Preconditions for testing:

- Specification of keys as input parameter to the function to be tested
- Specification of required input parameters such as modes
- Specification of user data (plaintext)
- Tapping of encrypted user data (ciphertext) directly in the nonvolatile memory

UDE1: AES-CBC Tests

For the AES-CBC tests described below, the plaintext, ciphertext, and IV values shall consist of 128-bit blocks. To determine correctness, the evaluator shall compare the resulting values to those obtained by submitting the same inputs to a known-good implementation.

These tests are intended to be equivalent to those described in NIST's AES Algorithm Validation Suite (AESAVS) (http://csrc.nist.gov/groups/STM/cavp/documents/aes/AESAVS.pdf). Known answer values tailored to exercise the AES-CBC implementation can be obtained using NIST's CAVS Algorithm Validation Tool or from NIST's ACPV service for automated algorithm tests (acvp.nist.gov), when available. It is not recommended that evaluators use values obtained from static sources such as the example NIST's AES Known Answer Test Values from the AESAVS document, or use values not generated expressly to exercise the AES-CBC implementation.

• Test 1: AES-CBC Known-Answer Tests (KAT)

KAT-1 (GFSBox):

To test the encrypt functionality of AES-CBC, the evaluator shall supply a set of five different plaintext values for each selected key size and obtain the ciphertext value that results from AES-CBC encryption of the given plaintext using a key value of all zeros and an IV of all zeros.

To test the decrypt functionality of AES-CBC, the evaluator shall supply a set of five different ciphertext values for each selected key size and obtain the plaintext value that results from AES-CBC decryption of the given ciphertext using a key value of all zeros and an IV of all zeros.

KAT-2 (KeySBox):

To test the encrypt functionality of AES-CBC, the evaluator shall supply a set of five different key values for each selected key size and obtain the ciphertext value that results from AES-CBC encryption of an all-zeros plaintext using the given key value and an IV of all zeros.

To test the decrypt functionality of AES-CBC, the evaluator shall supply a set of five different key values for each selected key size and obtain the plaintext that results from AES-CBC decryption of an all-zeros ciphertext using the given key and an IV of all zeros.

KAT-3 (Variable Key):

To test the encrypt functionality of AES-CBC, the evaluator shall supply a set of keys for each selected key size (as described below) and obtain the ciphertext value that results from AES encryption of an all-zeros plaintext using each key and an IV of all zeros.

Key i in each set shall have the leftmost i bits set to ones and the remaining bits to zeros, for values of i from 1 to the key size. The keys and corresponding ciphertext are listed in AESAVS, Appendix E.

To test the decrypt functionality of AES-CBC, the evaluator shall use the same keys as above to decrypt the ciphertext results from above. Each decryption should result in an all-zeros plaintext.

KAT-4 (Variable Text):

To test the encrypt functionality of AES-CBC, for each selected key size, the evaluator shall supply a set of 128-bit plaintext values (as described below) and obtain the ciphertext values that result from AES-CBC encryption of each plaintext value using a key of each size and IV consisting of all zeros.

Plaintext value i shall have the leftmost i bits set to ones and the

remaining bits set to zeros, for values of i from 1 to 128. The plaintext values are listed in AESAVS, Appendix D.

To test the decrypt functionality of AES-CBC, for each selected key size, use the plaintext values from above as ciphertext input, and AES-CBC decrypt each ciphertext value using key of each size consisting of all zeros and an IV of all zeros.

• Test 2: AES-CBC Multi-Block Message Test
The evaluator shall test the encrypt functionality by encrypting
nine i-block messages for each selected key size, for $2 \le i \le 10$.
For each test, the evaluator shall supply a key, an IV, and a
plaintext message of length i blocks, and encrypt the message
using AES-CBC. The resulting ciphertext values shall be
compared to the results of encrypting the plaintext messages
using a known good implementation.

The evaluator shall test the decrypt functionality by decrypting nine i-block messages for each selected key size, for $2 \le i \le 10$. For each test, the evaluator shall supply a key, an IV, and a ciphertext message of length i blocks, and decrypt the message using AES-CBC. The resulting plaintext values shall be compared to the results of decrypting the ciphertext messages using a known good implementation.

• Test 3: AES-CBC Monte-Carlo Test (TBD)

The evaluator shall test the encrypt functionality for each selected key size using 100 3-tuples of pseudo-random values for plaintext, IVs, and keys.

The evaluator shall supply a single 3-tuple of pseudo-random values for each selected key size. This 3-tuple of plaintext, IV, and key is provided as input to the below algorithm to generate the remaining 99 3-tuples, and to run each 3-tuple through 1000 iterations of AES-CBC encryption.

```
# Input: PT, IV, Key
Key[0]=Key
IV[0]=IV
PT[0]=PT
for i = 1 to 100 {
Output Key[i],IV[i],PT[0]
for j=1 to 1000 {
if_{j} = 1 {
CT[1] = AES-CBC-Encrypt(Key[i], IV[i],PT[1])
PT[2] = IV[i]
} else {
CT[j] = AES-CBC-Encrypt(Key[i],PT[j])
PT[j+1] = CT[j-1]
Output CT[1000]
If KeySize == 128 \{ Key[i+1] = Key[i] \text{ xor } CT[1000] \}
If KeySize == 256 { Key[i+1] = Key[i] \times ((CT[999] \text{ leftshift } 128))
| CT[1000]) }
IV[i+1] = CT[1000]
PT[0] = CT[999]
```

The ciphertext computed in the 1000th iteration (CT[1000]) is the result for each of the 100 3-tuples for each selected key size. This result shall be compared to the result of running 1000 iterations with the same values using a known good implementation.

The evaluator shall test the decrypt functionality using the same test as above, exchanging CT and PT, and replacing AES-CBC-Encrypt with AES-CBC-Decrypt.

• **Test 4: UDE2: AES-CCM Tests** These tests are intended to be equivalent to those described in the NIST document, "The CCM Validation System (CCMVS)," updated 9 Jan 2012, found at http://csrc.nist.gov/groups/STM/cavp/documents/mac/CCMVS.pdf.

Known answer values tailored to exercise the AES-CCM implementation can be obtained using NIST's CAVS Algorithm

Validation Tool or from NIST's ACPV service for automated algorithm tests (acvp.nist.gov), when available. It is not recommended that evaluators use values obtained from static sources such as

http://csrc.nist.gov/groups/STM/cavp/documents/mac/ccmtestvectors.zip or use values not generated expressly to exercise the AES-CCM implementation.

The evaluator shall test the generation-encryption and decryption-verification functionality of AES-CCM for the following input parameter and tag lengths:

Keys: All supported and selected key sizes (e.g., 128, 192, 256 bits).

Associated Data: Two or three values for associated data length: The minimum (≥ 0 bytes) and maximum (≤ 32 bytes) supported associated data lengths, and 2^16 (65536) bytes, if supported.

Payload: Two values for payload length: The minimum (≥ 0 bytes) and maximum (≤ 32 bytes) supported payload lengths.

Nonces: All supported nonce lengths (7, 8, 9, 10, 11, 12, 13).

Tag: All supported tag lengths (4, 6, 8, 10, 12, 14, 16).

The testing for CCM consists of five tests. To determine correctness in each of the below tests, the evaluator shall compare the ciphertext with the result of encryption of the same inputs with a known good implementation.

A. References

Identifier	Title
[CC]	Common Criteria for Information Technology Security Evaluation - Part 1: Introduction and General Model, CCMB-2012-09-001, Version 3.1 Revision 4, September 2012. Part 2: Security Functional Components, CCMB-2012-09-002, Version 3.1 Revision 4, September 2012. Part 3: Security Assurance Components, CCMB-2012-09-003, Version 3.1 Revision 4, September 2012.
[GPOSPP]	Protection Profile for General Purpose Operating Systems
[MDMPP]	Protection Profile for Mobile Device Management
[AppPP]	Protection Profile for Application Software
[VirtPP]	Protection Profile for Virtualization

B. Acronyms

Acronym	Meaning
AES	Advanced Encryption Standard
CBC	Cipher Block Chaining
ECDSA	Elliptic Curve Digital Signature Algorithm
GCM	Galois/Counter Mode
IETF	Internet Engineering Task Force
IV	Initialization Vector
MAC	Message Authentication Code
NIST	National Institute of Standards and Technology
PBKDF	Password-Based Key Derivation Function
RFC	Request for Comment (IETF)
RSA	Rivest Shamir Adelman