
Tabular	Presentation	of	the	

Crypto	Catalog

Version:	1.0

2017-04-19

National	Information	Assurance	Partnership

Revision	History
Version Date Comment
1.0 2017-04-19 Initial	Catalog

Introduction

This	document	presents	the	Security	Functional	Requirements	and	Security	Assurance
Requirements	from	the	Crypto	Catalog.	This	tabular	representation	is	provided	for	those
audiences	whose	interest	primarily	lies	in	those	portions	of	that	document.	The	Protection
Profile	itself	remains	the	only	complete	and	authoritative	representation,	and	includes
discussion	of	assumptions,	threats,	and	objectives.

Security	Functional	Requirements
ID Requirement Assurance	Activity
FCS_COP.1.1(1) The	TSF	shall	perform	user	data

encryption/decryption	in	accordance
with	a	specified	cryptographic	algorithm
[selection:	cryptographic	algorithm]
and	cryptographic	key	sizes	[selection:
key	sizes]	that	meet	the	following
[selection:	list	of	standards]	.	

The	following	table	provides	the	allowed
choices	for	completion	of	the	selection
operations	of	FCS_COP.1/UDE:	

Application	Note:	There	is	app	note
here.	What	we	really	want	is	a	nice	table
of	the	catalog	options.	And	also,	we
would	like	the	aactivity	to	be	eactivity.

TSS	The	evaluator	shall	check	that	the	TSS	includes	a	description	of	encryption	function(s)	used	for	user
data	encryption.	The	evaluator	should	check	that	this	description	of	the	selected	encryption	function
includes	the	key	sizes	and	modes	of	operation	as	specified	in	the	table	above	per	row.	

The	evaluator	shall	check	that	the	TSS	describes	the	means	by	which	the	TOE	satisfies	constraints	on
algorithm	parameters	included	in	the	selections	made	for	cryptographic	algorithm	and	list	of	standards.	

KMDSD	The	evaluator	shall	examine	the	KMDSD	to	ensure	that	the	points	at	which	user	data	encryption	and
decryption	occurs	are	described,	and	that	the	complete	data	path	for	user	data	encryption	is	described.	The
evaluator	checks	that	this	description	is	consistent	with	the	relevant	parts	of	the	TSS.	

If	XTS-AES	is	used	as	the	user	data	encryption	algorithm	then	the	evaluator	shall	check	that	the	full	length
keys	are	created	by	methods	that	ensure	that	the	two	halves	are	different	and	independent.	

Guidance	If	multiple	encryption	modes	are	supported,	the	evaluator	examines	the	guidance	documentation
to	determine	that	the	method	of	choosing	a	specific	mode/key	size	by	the	end	user	is	described.	

Tests	The	following	tests	are	conditional	based	upon	the	selections	made	in	the	SFR.	The	evaluator	shall
perform	the	following	test	or	witness	respective	tests	executed	by	the	developer	if	technically	possible,
otherwise	an	analysis	of	the	implementation	representation	has	to	be	performed.	Preconditions	for	testing:

Specification	of	keys	as	input	parameter	to	the	function	to	be	tested
Specification	of	required	input	parameters	such	as	modes
Specification	of	user	data	(plaintext)
Tapping	of	encrypted	user	data	(ciphertext)	directly	in	the	non-volatile	memory

file:///home/runner/work/crypto-catalog/crypto-catalog/commoncriteria.github.io/pp/crypto-catalog/crypto-catalog-table.html?expand=on#FCS_COP.1.1(1)

UDE1:	AES-CBC	Tests
For	the	AES-CBC	tests	described	below,	the	plaintext,	ciphertext,	and	IV	values	shall	consist	of	128-bit
blocks.	To	determine	correctness,	the	evaluator	shall	compare	the	resulting	values	to	those	obtained	by
submitting	the	same	inputs	to	a	known-good	implementation.	

These	tests	are	intended	to	be	equivalent	to	those	described	in	NIST’s	AES	Algorithm	Validation	Suite
(AESAVS)	(http://csrc.nist.gov/groups/STM/cavp/documents/aes/AESAVS.pdf).	Known	answer	values	tailored
to	exercise	the	AES-CBC	implementation	can	be	obtained	using	NIST’s	CAVS	Algorithm	Validation	Tool	or
from	NIST’s	ACPV	service	for	automated	algorithm	tests	(acvp.nist.gov),	when	available.	It	is	not
recommended	that	evaluators	use	values	obtained	from	static	sources	such	as	the	example	NIST’s	AES
Known	Answer	Test	Values	from	the	AESAVS	document,	or	use	values	not	generated	expressly	to	exercise
the	AES-CBC	implementation.	

Test	1:	AES-CBC	Known-Answer	Tests	(KAT)
KAT-1	(GFSBox):

To	test	the	encrypt	functionality	of	AES-CBC,	the	evaluator	shall	supply	a	set	of	five	different	plaintext
values	for	each	selected	key	size	and	obtain	the	ciphertext	value	that	results	from	AES-CBC
encryption	of	the	given	plaintext	using	a	key	value	of	all	zeros	and	an	IV	of	all	zeros.

To	test	the	decrypt	functionality	of	AES-CBC,	the	evaluator	shall	supply	a	set	of	five	different
ciphertext	values	for	each	selected	key	size	and	obtain	the	plaintext	value	that	results	from	AES-CBC
decryption	of	the	given	ciphertext	using	a	key	value	of	all	zeros	and	an	IV	of	all	zeros.	

KAT-2	(KeySBox):

To	test	the	encrypt	functionality	of	AES-CBC,	the	evaluator	shall	supply	a	set	of	five	different	key
values	for	each	selected	key	size	and	obtain	the	ciphertext	value	that	results	from	AES-CBC
encryption	of	an	all-zeros	plaintext	using	the	given	key	value	and	an	IV	of	all	zeros.

To	test	the	decrypt	functionality	of	AES-CBC,	the	evaluator	shall	supply	a	set	of	five	different	key
values	for	each	selected	key	size	and	obtain	the	plaintext	that	results	from	AES-CBC	decryption	of	an
all-zeros	ciphertext	using	the	given	key	and	an	IV	of	all	zeros.	

KAT-3	(Variable	Key):

To	test	the	encrypt	functionality	of	AES-CBC,	the	evaluator	shall	supply	a	set	of	keys	for	each
selected	key	size	(as	described	below)	and	obtain	the	ciphertext	value	that	results	from	AES
encryption	of	an	all-zeros	plaintext	using	each	key	and	an	IV	of	all	zeros.

Key	i	in	each	set	shall	have	the	leftmost	i	bits	set	to	ones	and	the	remaining	bits	to	zeros,	for	values
of	i	from	1	to	the	key	size.	The	keys	and	corresponding	ciphertext	are	listed	in	AESAVS,	Appendix	E.

To	test	the	decrypt	functionality	of	AES-CBC,	the	evaluator	shall	use	the	same	keys	as	above	to
decrypt	the	ciphertext	results	from	above.	Each	decryption	should	result	in	an	all-zeros	plaintext.	

KAT-4	(Variable	Text):

To	test	the	encrypt	functionality	of	AES-CBC,	for	each	selected	key	size,	the	evaluator	shall	supply	a
set	of	128-bit	plaintext	values	(as	described	below)	and	obtain	the	ciphertext	values	that	result	from
AES-CBC	encryption	of	each	plaintext	value	using	a	key	of	each	size	and	IV	consisting	of	all	zeros.

Plaintext	value	i	shall	have	the	leftmost	i	bits	set	to	ones	and	the	remaining	bits	set	to	zeros,	for
values	of	i	from	1	to	128.	The	plaintext	values	are	listed	in	AESAVS,	Appendix	D.

To	test	the	decrypt	functionality	of	AES-CBC,	for	each	selected	key	size,	use	the	plaintext	values	from
above	as	ciphertext	input,	and	AES-CBC	decrypt	each	ciphertext	value	using	key	of	each	size
consisting	of	all	zeros	and	an	IV	of	all	zeros.
Test	2:	AES-CBC	Multi-Block	Message	Test	
The	evaluator	shall	test	the	encrypt	functionality	by	encrypting	nine	i-block	messages	for	each
selected	key	size,	for	2	≤	i	≤	10.	For	each	test,	the	evaluator	shall	supply	a	key,	an	IV,	and	a	plaintext
message	of	length	i	blocks,	and	encrypt	the	message	using	AES-CBC.	The	resulting	ciphertext	values
shall	be	compared	to	the	results	of	encrypting	the	plaintext	messages	using	a	known	good
implementation.

The	evaluator	shall	test	the	decrypt	functionality	by	decrypting	nine	i-block	messages	for	each
selected	key	size,	for	2	≤	i	≤	10.	For	each	test,	the	evaluator	shall	supply	a	key,	an	IV,	and	a
ciphertext	message	of	length	i	blocks,	and	decrypt	the	message	using	AES-CBC.	The	resulting
plaintext	values	shall	be	compared	to	the	results	of	decrypting	the	ciphertext	messages	using	a
known	good	implementation.
Test	3:	AES-CBC	Monte-Carlo	Test	(TBD)	
The	evaluator	shall	test	the	encrypt	functionality	for	each	selected	key	size	using	100	3-tuples	of
pseudo-random	values	for	plaintext,	IVs,	and	keys.	

The	evaluator	shall	supply	a	single	3-tuple	of	pseudo-random	values	for	each	selected	key	size.	This
3-tuple	of	plaintext,	IV,	and	key	is	provided	as	input	to	the	below	algorithm	to	generate	the	remaining
99	3-tuples,	and	to	run	each	3-tuple	through	1000	iterations	of	AES-CBC	encryption.	

#	Input:	PT,	IV,	Key
Key[0]=Key
IV[0]=IV
PT[0]=PT
for	i	=	1	to	100	{
Output	Key[i],IV[i],PT[0]
for	j=1	to	1000	{
if	j==1	{
CT[1]	=	AES-CBC-Encrypt(Key[i],	IV[i],PT[1])
PT[2]	=	IV[i]
}	else	{
CT[j]	=	AES-CBC-Encrypt(Key[i],PT[j])
PT[j+1]	=	CT[j-1]
}
}
Output	CT[1000]
If	KeySize	==	128	{	Key[i+1]	=	Key[i]	xor	CT[1000]	}
If	KeySize	==	256	{	Key[i+1]	=	Key[i]	xor	((CT[999]	leftshift	128)	|	CT[1000])	}
IV[i+1]	=	CT[1000]
PT[0]	=	CT[999]
}	

The	ciphertext	computed	in	the	1000th	iteration	(CT[1000])	is	the	result	for	each	of	the	100	3-tuples
for	each	selected	key	size.	This	result	shall	be	compared	to	the	result	of	running	1000	iterations	with
the	same	values	using	a	known	good	implementation.	

The	evaluator	shall	test	the	decrypt	functionality	using	the	same	test	as	above,	exchanging	CT	and
PT,	and	replacing	AES-CBC-Encrypt	with	AES-CBC-Decrypt.	

Test	4:	UDE2:	AES-CCM	Tests	These	tests	are	intended	to	be	equivalent	to	those	described	in	the
NIST	document,	“The	CCM	Validation	System	(CCMVS),”	updated	9	Jan	2012,	found	at
http://csrc.nist.gov/groups/STM/cavp/documents/mac/CCMVS.pdf.

Known	answer	values	tailored	to	exercise	the	AES-CCM	implementation	can	be	obtained	using	NIST’s
CAVS	Algorithm	Validation	Tool	or	from	NIST’s	ACPV	service	for	automated	algorithm	tests
(acvp.nist.gov),	when	available.	It	is	not	recommended	that	evaluators	use	values	obtained	from
static	sources	such	as	http://csrc.nist.gov/groups/STM/cavp/documents/mac/ccmtestvectors.zip	or	use
values	not	generated	expressly	to	exercise	the	AES-CCM	implementation.

The	evaluator	shall	test	the	generation-encryption	and	decryption-verification	functionality	of	AES-
CCM	for	the	following	input	parameter	and	tag	lengths:

Keys:	All	supported	and	selected	key	sizes	(e.g.,	128,	192,	256	bits).

Associated	Data:	Two	or	three	values	for	associated	data	length:	The	minimum	(≥	0	bytes)	and
maximum	(≤	32	bytes)	supported	associated	data	lengths,	and	2^16	(65536)	bytes,	if	supported.

Payload:	Two	values	for	payload	length:	The	minimum	(≥	0	bytes)	and	maximum	(≤	32	bytes)
supported	payload	lengths.

Nonces:	All	supported	nonce	lengths	(7,	8,	9,	10,	11,	12,	13).

Tag:	All	supported	tag	lengths	(4,	6,	8,	10,	12,	14,	16).

The	testing	for	CCM	consists	of	five	tests.	To	determine	correctness	in	each	of	the	below	tests,	the
evaluator	shall	compare	the	ciphertext	with	the	result	of	encryption	of	the	same	inputs	with	a	known
good	implementation.

Security	Assurance	Requirements
ID Requirement Assurance	Activity

Glossary
Common	Criteria	(CC) Common	Criteria	for	Information	Technology	Security	Evaluation.
Extended	Package	(EP) An	implementation-independent	set	of	security	requirements	for	a	category	of	products,	which	extends	those	in	a	Protection

Profile.
Protection	Profile	(PP) An	implementation-independent	set	of	security	requirements	for	a	category	of	products.
Security	Target	(ST) A	set	of	implementation-dependent	security	requirements	for	a	specific	product.
Target	of	Evaluation	(TOE) The	product	under	evaluation.
TOE	Security	Functionality	(TSF) The	security	functionality	of	the	product	under	evaluation.
TOE	Summary	Specification	(TSS) A	description	of	how	a	TOE	satisfies	the	SFRs	in	a	ST.
Security	Functional	Requirement
(SFR)

A	requirement	for	security	enforcement	by	the	TOE.

Security	Assurance	Requirement
(SAR)

A	requirement	to	assure	the	security	of	the	TOE.

Secure	Shell	(SSH) Cryptographic	network	protocol	for	initiating	text-based	shell	sessions	on	remote	systems.

file:///home/runner/work/crypto-catalog/crypto-catalog/commoncriteria.github.io/pp/crypto-catalog/crypto-catalog-table.html?expand=on#abbr_TOE
file:///home/runner/work/crypto-catalog/crypto-catalog/commoncriteria.github.io/pp/crypto-catalog/crypto-catalog-table.html?expand=on#abbr_ST
file:///home/runner/work/crypto-catalog/crypto-catalog/commoncriteria.github.io/pp/crypto-catalog/crypto-catalog-table.html?expand=on#abbr_TOE
file:///home/runner/work/crypto-catalog/crypto-catalog/commoncriteria.github.io/pp/crypto-catalog/crypto-catalog-table.html?expand=on#abbr_TOE

